Affine phase retrieval of quaternion signals

被引:0
|
作者
Li, Yun-Zhang [1 ]
Yang, Ming [1 ]
机构
[1] Beijing Univ Technol, Sch Math Stat & Mech, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Phase retrieval; affine phase retrieval; quaternion; frame; phaselift; INJECTIVITY; IMAGES;
D O I
10.1080/03081087.2024.2396579
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Quaternion algebra $ \mathbb {H} $ H is an extension of the complex number field, which is a noncommutative associative algebra. In recent years, quaternionic Fourier analysis has interested some mathematicians due to its applications in signal analysis and image processing. This paper addresses quaternionic affine phase retrieval (QAPR) in quaternion Euclidean spaces $ \mathbb {H}<^>{M} $ HM, which aims to exactly recover a signal in $ \mathbb {H}<^>{M} $ HM from the magnitudes of its affine measurements. We introduce the concepts of QAPR and phaselift operator in $ \mathbb {H}<^>{M} $ HM. Then, we characterize QAPR in terms of the real Jacobian matrix, prove that 5M is the minimal measurement number for QAPR in $ \mathbb {H}<^>{M} $ HM, study the stability of QAPR-sequences, and use the phaselift techniques to give some sufficient conditions on QAPR for $ \mathbb {H}<^>{M} $ HM which provide us with a method to construct QAPR-sequences.
引用
收藏
页数:18
相关论文
共 50 条
  • [41] Sparse Affine Sampling: Ambiguity-Free and Efficient Sparse Phase Retrieval
    Yang, Ming-Hsun
    Hong, Y-W Peter
    Wu, Jwo-Yuh
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2022, 68 (11) : 7604 - 7626
  • [42] Positive Semidefinite Matrix Factorization: A Connection With Phase Retrieval and Affine Rank Minimization
    Lahat, Dana
    Lang, Yanbin
    Tan, Vincent Y. F.
    Fevotte, Cedric
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2021, 69 : 3059 - 3074
  • [43] PARALLEL COMPUTING IN THE PROCESSING OF QUATERNION SIGNALS
    Rozhentsov, A. A.
    Baev, A. A.
    DISTRIBUTED COMPUTING AND GRID-TECHNOLOGIES IN SCIENCE AND EDUCATION, 2010, : 399 - 405
  • [44] Multiview Reconstruction Using Phase Retrieval of Light Field Signals
    He, Nan
    Zhang, Hong
    Zhu, Changjian
    IEEE ACCESS, 2022, 10 : 106897 - 106908
  • [45] PHASE RETRIEVAL OF SPARSE SIGNALS USING OPTIMIZATION TRANSFER AND ADMM
    Weller, Daniel S.
    Pnueli, Ayelet
    Radzyner, Ori
    Divon, Gilad
    Eldar, Yonina C.
    Fessler, Jeffrey A.
    2014 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2014, : 1342 - 1346
  • [46] Phase retrieval for superposed signals from multiple binary objects
    Alpers, Andreas
    Herman, Gabor T.
    Poulsen, Henning Friis
    Schmidt, Soren
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA A-OPTICS IMAGE SCIENCE AND VISION, 2010, 27 (09) : 1927 - 1937
  • [47] Phase retrieval of images from zeros of even unwrapped signals
    Petroudi, S
    Yagle, AE
    2001 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOLS I-VI, PROCEEDINGS: VOL I: SPEECH PROCESSING 1; VOL II: SPEECH PROCESSING 2 IND TECHNOL TRACK DESIGN & IMPLEMENTATION OF SIGNAL PROCESSING SYSTEMS NEURALNETWORKS FOR SIGNAL PROCESSING; VOL III: IMAGE & MULTIDIMENSIONAL SIGNAL PROCESSING MULTIMEDIA SIGNAL PROCESSING - VOL IV: SIGNAL PROCESSING FOR COMMUNICATIONS; VOL V: SIGNAL PROCESSING EDUCATION SENSOR ARRAY & MULTICHANNEL SIGNAL PROCESSING AUDIO & ELECTROACOUSTICS; VOL VI: SIGNAL PROCESSING THEORY & METHODS STUDENT FORUM, 2001, : 1905 - 1908
  • [48] A PHASE RETRIEVAL METHOD FOR SIGNALS IN MODULATION-INVARIANT SPACES
    Pohl, Volker
    Yapar, Cagkan
    Boche, Bolger
    Yang, Fanny
    2014 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2014,
  • [49] Multiview Reconstruction Using Phase Retrieval of Light Field Signals
    He, Nan
    Zhang, Hong
    Zhu, Changjian
    IEEE Access, 2022, 10 : 106897 - 106908
  • [50] FROG-measurement based phase retrieval for analytic signals
    Li, Youfa
    Ma, Yaoshuai
    Han, Deguang
    APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2021, 55 : 199 - 222