Affine phase retrieval of quaternion signals

被引:0
|
作者
Li, Yun-Zhang [1 ]
Yang, Ming [1 ]
机构
[1] Beijing Univ Technol, Sch Math Stat & Mech, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Phase retrieval; affine phase retrieval; quaternion; frame; phaselift; INJECTIVITY; IMAGES;
D O I
10.1080/03081087.2024.2396579
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Quaternion algebra $ \mathbb {H} $ H is an extension of the complex number field, which is a noncommutative associative algebra. In recent years, quaternionic Fourier analysis has interested some mathematicians due to its applications in signal analysis and image processing. This paper addresses quaternionic affine phase retrieval (QAPR) in quaternion Euclidean spaces $ \mathbb {H}<^>{M} $ HM, which aims to exactly recover a signal in $ \mathbb {H}<^>{M} $ HM from the magnitudes of its affine measurements. We introduce the concepts of QAPR and phaselift operator in $ \mathbb {H}<^>{M} $ HM. Then, we characterize QAPR in terms of the real Jacobian matrix, prove that 5M is the minimal measurement number for QAPR in $ \mathbb {H}<^>{M} $ HM, study the stability of QAPR-sequences, and use the phaselift techniques to give some sufficient conditions on QAPR for $ \mathbb {H}<^>{M} $ HM which provide us with a method to construct QAPR-sequences.
引用
收藏
页数:18
相关论文
共 50 条
  • [31] Translation uniqueness of phase retrieval and magnitude retrieval of band-limited signals
    Chen, Lung-Hui
    JOURNAL OF APPLIED ANALYSIS, 2021, 27 (02) : 259 - 268
  • [32] Effective phase retrieval of sparse signals with convergence guarantee
    Li, Ji
    SIGNAL PROCESSING, 2022, 192
  • [33] Constructing confidence intervals for the signals in sparse phase retrieval
    Yao, Yisha
    ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (01): : 785 - 813
  • [34] Vectorial Phase Retrieval of 1-D Signals
    Raz, Oren
    Dudovich, Nirit
    Nadler, Boaz
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2013, 61 (07) : 1632 - 1643
  • [35] PHASE RETRIEVAL FOR SPARSE SIGNALS USING RANK MINIMIZATION
    Jaganathan, Kishore
    Oymak, Samet
    Hassibi, Babak
    2012 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2012, : 3449 - 3452
  • [36] Spectrum of quaternion signals associated with quaternion linear canonical transform
    Prasad, Akhilesh
    Kundu, Manab
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (02): : 764 - 775
  • [37] Phase retrieval from power spectra of masked signals
    Bandeira, Afonso S.
    Chen, Yutong
    INFORMATION AND INFERENCE-A JOURNAL OF THE IMA, 2014, 3 (02) : 83 - 102
  • [38] Harmonics Retrieval Based on Quaternion Matrix
    Sun, Xiaoying
    Wang, Fei
    She, Ji
    ICSP: 2008 9TH INTERNATIONAL CONFERENCE ON SIGNAL PROCESSING, VOLS 1-5, PROCEEDINGS, 2008, : 136 - +
  • [39] What conjugate phase retrieval complex vectors can do in quaternion Euclidean spaces
    Li, Yun-Zhang
    Yang, Ming
    FORUM MATHEMATICUM, 2024, 36 (06) : 1585 - 1601
  • [40] Affine circle geometry over quaternion skew fields
    Havlicek, H
    DISCRETE MATHEMATICS, 1997, 174 (1-3) : 153 - 165