Affine phase retrieval of quaternion signals

被引:0
|
作者
Li, Yun-Zhang [1 ]
Yang, Ming [1 ]
机构
[1] Beijing Univ Technol, Sch Math Stat & Mech, Beijing 100124, Peoples R China
基金
中国国家自然科学基金;
关键词
Phase retrieval; affine phase retrieval; quaternion; frame; phaselift; INJECTIVITY; IMAGES;
D O I
10.1080/03081087.2024.2396579
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Quaternion algebra $ \mathbb {H} $ H is an extension of the complex number field, which is a noncommutative associative algebra. In recent years, quaternionic Fourier analysis has interested some mathematicians due to its applications in signal analysis and image processing. This paper addresses quaternionic affine phase retrieval (QAPR) in quaternion Euclidean spaces $ \mathbb {H}<^>{M} $ HM, which aims to exactly recover a signal in $ \mathbb {H}<^>{M} $ HM from the magnitudes of its affine measurements. We introduce the concepts of QAPR and phaselift operator in $ \mathbb {H}<^>{M} $ HM. Then, we characterize QAPR in terms of the real Jacobian matrix, prove that 5M is the minimal measurement number for QAPR in $ \mathbb {H}<^>{M} $ HM, study the stability of QAPR-sequences, and use the phaselift techniques to give some sufficient conditions on QAPR for $ \mathbb {H}<^>{M} $ HM which provide us with a method to construct QAPR-sequences.
引用
收藏
页数:18
相关论文
共 50 条
  • [21] On stability of generalized (affine) phase retrieval in the complex case
    Zhuang, Zhitao
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2019, 2019 (01)
  • [22] Phase Retrieval for Wide Band Signals
    Jaming, Philippe
    Kellay, Karim
    Perez, Rolando, III
    JOURNAL OF FOURIER ANALYSIS AND APPLICATIONS, 2020, 26 (04)
  • [23] Filtering of quaternion signals
    Ya. A. Furman
    R. G. Khafizov
    A. A. Rozhentsov
    Journal of Communications Technology and Electronics, 2007, 52 : 36 - 44
  • [24] Filtering of quaternion signals
    Furman, Ya. A.
    Khafizov, R. G.
    Rozhentsov, A. A.
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2007, 52 (01) : 36 - 44
  • [25] PHASE RETRIEVAL OF TIME-LIMITED SIGNALS
    Fu Yingxiong
    Li Luoqing
    ACTA MATHEMATICA SCIENTIA, 2010, 30 (01) : 39 - 46
  • [26] PHASE RETRIEVAL OF TIME-LIMITED SIGNALS
    付应雄
    李落清
    ActaMathematicaScientia, 2010, 30 (01) : 39 - 46
  • [27] Super Resolution Phase Retrieval for Sparse Signals
    Baechler, Gilles
    Krekovic, Miranda
    Ranieri, Juri
    Chebira, Amina
    Lu, Yue M.
    Vetterli, Martin
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (18) : 4839 - 4854
  • [28] RELAXATION PROCEDURE FOR PHASE RETRIEVAL OF NONNEGATIVE SIGNALS
    AHN, H
    YAGLE, AE
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 1994, 42 (11) : 2997 - 3005
  • [29] GESPAR: Efficient Phase Retrieval of Sparse Signals
    Shechtman, Yoav
    Beck, Amir
    Eldar, Yonina C.
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2014, 62 (04) : 928 - 938
  • [30] A class of quaternion valued affine projection algorithms
    Jahanchahi, Cyrus
    Took, Clive Cheong
    Mandic, Danilo P.
    SIGNAL PROCESSING, 2013, 93 (07) : 1712 - 1723