A study of *-Ricci-Yamabe solitons on LP-Kenmotsu manifolds

被引:0
|
作者
Haseeb, Abdul [1 ]
Mofarreh, Fatemah [2 ]
Chaubey, Sudhakar Kumar [3 ]
Prasad, Rajendra [4 ]
机构
[1] Jazan Univ, Coll Sci, Dept Math, POB 114, Jazan 45142, Saudi Arabia
[2] Princess Nourah Bint Abdulrahman Univ, Fac Sci, Math Sci Dept, Riyadh 11546, Saudi Arabia
[3] Univ Technol & Appl Sci, Sect Math, Shinas, Oman
[4] Univ Lucknow, Dept Math & Astron, Lucknow 226007, India
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 08期
关键词
*-Ricci-Yamabe solitons; LP-Kenmotsu manifolds; Einstein manifolds; it-Einstein manifolds; Poisson's equation;
D O I
10.3934/math.20241096
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we characterize LP-Kenmotsu manifolds admitting *-Ricci-Yamabe solitons (*-RYSs) and gradient *-Ricci-Yamabe solitons (gradient *-RYSs). It is shown that an LP-Kenmotsu manifold of dimension n admitting a *-Ricci-Yamabe soliton obeys Poisson's equation. We also determine the necessary and sufficient conditions under which the Laplace equation is satisfied by LP-Kenmotsu manifolds. Finally, by using a non-trivial example of an LP-Kenmotsu manifold, we verify some results of our paper.
引用
收藏
页码:22532 / 22546
页数:15
相关论文
共 50 条
  • [41] RICCI SOLITONS AND GRADIENT RICCI SOLITONS ON NEARLY KENMOTSU MANIFOLDS
    Ayar, Gulhan
    Yildirim, Mustafa
    FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2019, 34 (03): : 503 - 510
  • [42] *-CONFORMAL η-RICCI SOLITONS IN ε-KENMOTSU MANIFOLDS
    Haseeb, Abdul
    Prasad, Rajendra
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2020, 108 (122): : 91 - 102
  • [43] η-Ricci solitons on nearly Kenmotsu manifolds
    Ayar, Gulhan
    Yildirim, Mustafa
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2019, 12 (06)
  • [44] Almost η-Ricci solitons on Kenmotsu manifolds
    Patra, Dhriti Sundar
    Rovenski, Vladimir
    EUROPEAN JOURNAL OF MATHEMATICS, 2021, 7 (04) : 1753 - 1766
  • [45] Almost Kenmotsu (k, μ)′-manifolds with Yamabe solitons
    Wang, Yaning
    REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2020, 115 (01)
  • [46] A study of conformal almost Ricci solitons on Kenmotsu manifolds
    Sarkar, Sumanjit
    Dey, Santu
    Bhattacharyya, Arindam
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2023, 20 (04)
  • [47] Gradient Ricci-Yamabe Soliton on Twisted Product Manifolds
    Kim, Byung Hak
    Choi, Jin Hyuk
    Lee, Sang Deok
    Han, Chang Yong
    JOURNAL OF MATHEMATICS, 2022, 2022
  • [48] ( α,β )- TYPE ALMOST η-RICCI-YAMABE SOLITONS IN PERFECT FLUID SPACETIME
    Pandey, S.
    Mert, T.
    Atceken, M.
    ACTA MATHEMATICA UNIVERSITATIS COMENIANAE, 2024, 93 (03): : 171 - 183
  • [49] *-Ricci-Yamabe soliton on Kenmotsu manifold with torse forming potential vector field
    Roy, Soumendu
    Dey, Santu
    Alkhaldi, Ali. H.
    Ali, Akram
    Bhattacharyya, Arindam
    FILOMAT, 2024, 38 (08) : 2707 - 2719
  • [50] Ricci-Yamabe solitons on a class of generalized Sasakian space forms
    Sardar, Arpan
    Sarkar, Avijit
    ASIAN-EUROPEAN JOURNAL OF MATHEMATICS, 2022, 15 (09)