CQARCHAEO: A PYTHON']PYTHON PACKAGE FOR COSINE QUANTOGRAM ANALYSIS AND MONTE CARLO SIMULATIONS

被引:0
|
作者
Lago, Giancarlo [1 ,2 ]
Cardarelli, Lorenzo [3 ,4 ]
Ialongo, Nicola [5 ]
机构
[1] Univ Salento, Dipartimento Beni Culturali, Lecce, Italy
[2] Univ Bologna, Dipartimento Sci Econ DSE, Bologna, Italy
[3] Sapienza Univ Roma, Dipartimento Sci Antichita, Rome, Italy
[4] CNR, Ist Sci Patrimonio Culturale, Naples, Italy
[5] Georg August Univ, Seminar Ur & Fruhgeschichte, Gottingen, Germany
来源
ARCHEOLOGIA E CALCOLATORI | 2024年 / 35卷 / 01期
关键词
WEIGHTS;
D O I
10.19282/ac.35.1.2024.15
中图分类号
K85 [文物考古];
学科分类号
0601 ;
摘要
Cosine Quantogram Analysis (CQA) is a statistical analysis employed in archaeology for the study of numerical datasets with hypothesized quantal distribution. To verify thesignificance of the results, the analysis is often combined with the execution of Monte Carlo simulations. In this article, we present a freely downloadable Python package (CQArchaeo) that integrates CQA and Monte Carlo simulations in the same environment, making the analysis customizable in the main parameters. We provide a guide that enables the use of this tool even for researchers with limited experience in Python programming and demonstrate the applicability, functioning, and main limitations of the analysis on some archaeological datasets.
引用
收藏
页码:215 / 232
页数:18
相关论文
共 50 条
  • [41] MADLens, a python']python package for fast and differentiable non-Gaussian lensing simulations
    Bohm, V.
    Feng, Y.
    Lee, M. E.
    Dai, B.
    ASTRONOMY AND COMPUTING, 2021, 36
  • [42] McFine: PYTHON']PYTHON-based Monte Carlo multicomponent hyperfine structure fitting
    Williams, Thomas G.
    Watkins, Elizabeth J.
    MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY, 2024, 534 (02) : 1150 - 1165
  • [43] Systems Neuroscience Computing in Python']Python (SyNCoPy): a python']python package for large-scale analysis of electrophysiological data
    Moenke, Gregor
    Schaefer, Tim
    Parto-Dezfouli, Mohsen
    Kajal, Diljit Singh
    Fuertinger, Stefan
    Schmiedt, Joscha Tapani
    Fries, Pascal
    FRONTIERS IN NEUROINFORMATICS, 2024, 18
  • [44] SkyWinder: A Python']Python package for flight control, telemetry, and image analysis
    Kjellstrand, Carl Bjorn
    Williams, Bifford P.
    FRONTIERS IN ASTRONOMY AND SPACE SCIENCES, 2023, 10
  • [45] Accelerating item factor analysis on GPU with Python']Python package xifa
    Huang, Po-Hsien
    BEHAVIOR RESEARCH METHODS, 2023, 55 (08) : 4403 - 4418
  • [46] PyBoolNet: a python']python package for the generation, analysis and visualization of boolean networks
    Klarner, Hannes
    Streck, Adam
    Siebert, Heike
    BIOINFORMATICS, 2017, 33 (05) : 770 - 772
  • [47] ColiCoords: A Python']Python package for the analysis of bacterial fluorescence microscopy data
    Smit, Jochem H.
    Li, Yichen
    Warszawik, Eliza M.
    Herrmann, Andreas
    Cordes, Thorben
    PLOS ONE, 2019, 14 (06):
  • [48] scikit-fda: A Python']Python Package for Functional Data Analysis
    Ramos-Carreno, Carlos
    Carbajo-Berrocal, Miguel
    Torrecilla, Jose Luis
    Marcos, Pablo
    Suarez, Alberto
    JOURNAL OF STATISTICAL SOFTWARE, 2024, 109 (02): : 1 - 37
  • [49] PyCoMo: a python']python package for community metabolic model creation and analysis
    Predl, Michael
    Miesskes, Marianne
    Rattei, Thomas
    Zanghellini, Juergen
    BIOINFORMATICS, 2024, 40 (04)
  • [50] powerlaw: A Python']Python Package for Analysis of Heavy-Tailed Distributions
    Alstott, Jeff
    Bullmore, Edward T.
    Plenz, Dietmar
    PLOS ONE, 2014, 9 (01):