McFine: PYTHON']PYTHON-based Monte Carlo multicomponent hyperfine structure fitting

被引:0
|
作者
Williams, Thomas G. [1 ]
Watkins, Elizabeth J. [2 ]
机构
[1] Univ Oxford, Sub Dept Astrophys, Dept Phys, Keble Rd, Oxford OX1 3RH, England
[2] Univ Manchester, Jodrell Bank Ctr Astrophys, Dept Phys & Astron, Oxford Rd, Manchester M13 9PL, England
关键词
methods: data analysis; ISM: abundances; ISM: general; ISM: molecules; galaxies: ISM; GIANT MOLECULAR CLOUD; EVOLUTION; SPECTRA;
D O I
10.1093/mnras/stae2130
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Modelling complex line emission in the interstellar medium (ISM) is a degenerate high-dimensional problem. Here, we present McFine, a tool for automated multicomponent fitting of emission lines with complex hyperfine structure, in a fully automated way. We use Markov chain Monte Carlo (MCMC) to efficiently explore the complex parameter space, allowing for characterizing model denegeracies. This tool allows for both local thermodynamic equilibrium (LTE) and radiative-transfer (RT) models. McFine can fit individual spectra and data cubes, and for cubes encourage spatial coherence between neighbouring pixels. It is also built to fit the minimum number of distinct components, to avoid overfitting. We have carried out tests on synthetic spectra, where in around 90 per cent of cases it fits the correct number of components, otherwise slightly fewer components. Typically, Tex is overestimated and tau underestimated, but accurate within the estimated uncertainties. The velocity and line widths are recovered with extremely high accuracy, however. We verify McFine by applying to a large Atacama Large Millimeter/submillimeter Array (ALMA) N2H+ mosaic of an high-mass star forming region, G316.75-00.00. We find a similar quality of fit to our synthetic tests, aside from in the active regions forming O-stars, where the assumptions of Gaussian line profiles or LTE may break down. To show the general applicability of this code, we fit CO(J = 2-1) observations of NGC 3627, a nearby star-forming galaxy, again obtaining excellent fit quality. McFine provides a fully automated way to analyse rich data sets from interferometric observations, is open source, and pip-installable.
引用
收藏
页码:1150 / 1165
页数:16
相关论文
共 50 条
  • [1] Electron transport in gaseous detectors with a Python']Python-based Monte Carlo simulation code
    Al Atoum, B.
    Biagi, S. F.
    Gonzalez-Diaz, D.
    Jones, B. J. P.
    McDonald, A. D.
    COMPUTER PHYSICS COMMUNICATIONS, 2020, 254
  • [2] ipie: A Python']Python-Based Auxiliary-Field Quantum Monte Carlo Program with Flexibility and Efficiency on CPUs and GPUs
    Malone, Fionn D.
    Mahajan, Ankit
    Spencer, James S.
    Lee, Joonho
    JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (01) : 109 - 121
  • [3] ERSN-OpenMC-Py: A python']python-based open-source software for OpenMC Monte Carlo code
    Lahdour, M.
    El Bardouni, T.
    El Hajjaji, O.
    EL Bakkali, J.
    Al-Zain, J.
    Oulad-Belayachi, S.
    Ziani, H.
    Idrissi, Abdelghani
    Hlaibi, S. El Maliki El
    COMPUTER PHYSICS COMMUNICATIONS, 2024, 299
  • [4] PHENIX: a comprehensive Python']Python-based system for macromolecular structure solution
    Adams, Paul D.
    Afonine, Pavel V.
    Bunkoczi, Gabor
    Chen, Vincent B.
    Davis, Ian W.
    Echols, Nathaniel
    Headd, Jeffrey J.
    Hung, Li-Wei
    Kapral, Gary J.
    Grosse-Kunstleve, Ralf W.
    McCoy, Airlie J.
    Moriarty, Nigel W.
    Oeffner, Robert
    Read, Randy J.
    Richardson, David C.
    Richardson, Jane S.
    Terwilliger, Thomas C.
    Zwart, Peter H.
    ACTA CRYSTALLOGRAPHICA SECTION D-STRUCTURAL BIOLOGY, 2010, 66 : 213 - 221
  • [5] Teaching Monte Carlo Simulation with Python']Python
    Holman, Justin O.
    Hacherl, Allie
    JOURNAL OF STATISTICS AND DATA SCIENCE EDUCATION, 2023, 31 (01): : 33 - 44
  • [6] QuaPy: A Python']Python-Based Framework for Quantification
    Moreo, Alejandro
    Esuli, Andrea
    Sebastiani, Fabrizio
    PROCEEDINGS OF THE 30TH ACM INTERNATIONAL CONFERENCE ON INFORMATION & KNOWLEDGE MANAGEMENT, CIKM 2021, 2021, : 4534 - 4543
  • [7] PMST: A custom Python']Python-based Monte Carlo Simulation Tool for research and system development in portable pinhole gamma cameras
    Jiang, Yangfan
    Bugby, Sarah L.
    Lees, John E.
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2024, 1061
  • [8] Python']Python-based In Situ Analysis and Visualization
    Loring, Burlen
    Myers, Andrew
    Camp, David
    Bethel, E. Wes
    PROCEEDINGS OF IN SITU INFRASTRUCTURES FOR ENABLING EXTREME-SCALE ANALYSIS AND VISUALIZATION (ISAV 2018), 2018, : 19 - 24
  • [9] PACO: Python']Python-Based Atmospheric Correction
    de los Reyes, Raquel
    Langheinrich, Maximilian
    Schwind, Peter
    Richter, Rudolf
    Pflug, Bringfried
    Bachmann, Martin
    Mueller, Rupert
    Carmona, Emiliano
    Zekoll, Viktoria
    Reinartz, Peter
    SENSORS, 2020, 20 (05)
  • [10] MontePython']Python: Implementing quantum Monte Carlo using python']python
    Nilsen, Jon Kristian
    COMPUTER PHYSICS COMMUNICATIONS, 2007, 177 (10) : 799 - 814