DCE-Qnet: deep network quantification of dynamic contrast enhanced (DCE) MRI

被引:0
|
作者
Cohen, Ouri [1 ]
Kargar, Soudabeh [1 ]
Woo, Sungmin [2 ]
Vargas, Alberto [2 ]
Otazo, Ricardo [1 ,2 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Dept Med Phys, 320 East 61st St, New York, NY 10025 USA
[2] Mem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY USA
基金
美国国家卫生研究院;
关键词
DCE; Deep learning; DRONE; Neural network; ARTERIAL INPUT FUNCTION; PARAMETERS; MODELS;
D O I
10.1007/s10334-024-01189-0
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
IntroductionQuantification of dynamic contrast-enhanced (DCE)-MRI has the potential to provide valuable clinical information, but robust pharmacokinetic modeling remains a challenge for clinical adoption.MethodsA 7-layer neural network called DCE-Qnet was trained on simulated DCE-MRI signals derived from the Extended Tofts model with the Parker arterial input function. Network training incorporated B1 inhomogeneities to estimate perfusion (Ktrans, vp, ve), tissue T1 relaxation, proton density and bolus arrival time (BAT). The accuracy was tested in a digital phantom in comparison to a conventional nonlinear least-squares fitting (NLSQ). In vivo testing was conducted in ten healthy subjects. Regions of interest in the cervix and uterine myometrium were used to calculate the inter-subject variability. The clinical utility was demonstrated on a cervical cancer patient. Test-retest experiments were used to assess reproducibility of the parameter maps in the tumor.ResultsThe DCE-Qnet reconstruction outperformed NLSQ in the phantom. The coefficient of variation (CV) in the healthy cervix varied between 5 and 51% depending on the parameter. Parameter values in the tumor agreed with previous studies despite differences in methodology. The CV in the tumor varied between 1 and 47%.ConclusionThe proposed approach provides comprehensive DCE-MRI quantification from a single acquisition. DCE-Qnet eliminates the need for separate T1 scan or BAT processing, leading to a reduction of 10 min per scan and more accurate quantification.
引用
收藏
页码:1077 / 1090
页数:14
相关论文
共 50 条
  • [31] ANALYSIS OF ERECTILE TISSUE CONTRAST ENHANCEMENT IN THE RAT CAVERNOUS NERVE INJURY MODEL USING DYNAMIC CONTRAST ENHANCED (DCE) MRI
    Tal, R.
    Bennett, N. E.
    Winkelman, D.
    Koutcher, J. A.
    Mulhall, J. P.
    JOURNAL OF SEXUAL MEDICINE, 2010, 7 : 156 - 156
  • [32] Comparison of CAIPIRINHA-VIBE, Radial-VIBE, and conventional VIBE sequences for dynamic contrast-enhanced (DCE) MRI: A validation study using a DCE-MRI phantom
    Kim, Bohyun
    Lee, Chang Kyung
    Seo, Nieun
    Lee, Seung Soo
    Kim, Jeong Kon
    Choi, Yoonseok
    Woo, Dong-Cheol
    Kim, In Seong
    Nickel, Dominik
    Kim, Kyung Won
    MAGNETIC RESONANCE IMAGING, 2016, 34 (05) : 638 - 644
  • [33] DYNAMIC CONTRAST ENHANCED (DCE) T1 MRI PERFUSION DIFFERENTIATES PSEUDOPROGRESSION FROM RECURRENT GLIOBLASTOMA
    Thomas, Alissa
    Perez, Julio Arevalo
    Peck, Kyung
    Schneider, Taylor
    Lyo, John
    Young, Robert
    Kaley, Thomas
    NEURO-ONCOLOGY, 2014, 16
  • [34] DETAILED HISTOLOGICAL VALIDATION OF DYNAMIC CONTRAST ENHANCED (DCE) MRI IN THE PROSTATE: WHAT DOES KTRANS TELL US?
    Moman, M.
    Groenendaal, G.
    Philippens, M.
    Borren, A.
    Kruger, A. Boeken
    van Diest, P. J.
    van der Groep, P.
    van der Heide, U.
    van Vulpen, M.
    RADIOTHERAPY AND ONCOLOGY, 2010, 96 : S399 - S400
  • [35] Variability analysis of dynamic contrast enhanced magnetic resonance imaging (DCE-MRI) of hepatocellular carcinoma (HCC)
    Reddy, Kaunteya
    Tennant, Bud
    Buitrago, Sandra
    Hutson, Alan
    Ashton, Edward
    Iyer, Renuka
    CANCER RESEARCH, 2012, 72
  • [36] Dynamic contrast enhanced (DCE) MRI estimation of vascular parameters using knowledge-based adaptive models
    Bagher-Ebadian, Hassan
    Brown, Stephen L.
    Ghassemi, Mohammad M.
    Nagaraja, Tavarekere N.
    Valadie, Olivia Grahm
    Acharya, Prabhu C.
    Cabral, Glauber
    Divine, George
    Knight, Robert A.
    Lee, Ian Y.
    Xu, Jun H.
    Movsas, Benjamin
    Chetty, Indrin J.
    Ewing, James R.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [37] Dynamic contrast enhanced (DCE) MRI estimation of vascular parameters using knowledge-based adaptive models
    Hassan Bagher-Ebadian
    Stephen L. Brown
    Mohammad M. Ghassemi
    Tavarekere N. Nagaraja
    Olivia Grahm Valadie
    Prabhu C. Acharya
    Glauber Cabral
    George Divine
    Robert A. Knight
    Ian Y. Lee
    Jun H. Xu
    Benjamin Movsas
    Indrin J. Chetty
    James R. Ewing
    Scientific Reports, 13
  • [38] ANALYSIS OF ERECTILE TISSUE CONTRAST ENHANCEMENT IN THE RAT CAVERNOUS NERVE INJURY MODEL USING DYNAMIC CONTRAST ENHANCED (DCE) MRI
    Tal, R.
    Bennett, N.
    Le, C.
    Koutcher, J.
    Mulhall, J. P.
    JOURNAL OF SEXUAL MEDICINE, 2011, 8 : 31 - 31
  • [39] Soft tissue sarcoma: can dynamic contrast-enhanced (DCE) MRI be used to predict the histological grade?
    Li, Xiangwen
    Wang, Qimeng
    Dou, Yanping
    Zhang, Yu
    Tao, Juan
    Yang, Lin
    Wang, Shaowu
    SKELETAL RADIOLOGY, 2020, 49 (11) : 1829 - 1838
  • [40] Radiomics characterization of tissues in an animal brain tumor model imaged using dynamic contrast enhanced (DCE) MRI
    Hassan Bagher-Ebadian
    Stephen L. Brown
    Mohammad M. Ghassemi
    Tavarekere N. Nagaraja
    Benjamin Movsas
    James R. Ewing
    Indrin J. Chetty
    Scientific Reports, 13