Dynamic contrast enhanced (DCE) MRI estimation of vascular parameters using knowledge-based adaptive models

被引:0
|
作者
Hassan Bagher-Ebadian
Stephen L. Brown
Mohammad M. Ghassemi
Tavarekere N. Nagaraja
Olivia Grahm Valadie
Prabhu C. Acharya
Glauber Cabral
George Divine
Robert A. Knight
Ian Y. Lee
Jun H. Xu
Benjamin Movsas
Indrin J. Chetty
James R. Ewing
机构
[1] Henry Ford Health,Department of Radiation Oncology
[2] Michigan State University,Department of Radiology
[3] Michigan State University,Department of Osteopathic Medicine
[4] Oakland University,Department of Physics
[5] Michigan State University,Department of Computer Science and Engineering
[6] Henry Ford Health,Department of Neurosurgery
[7] Wayne State University,Department of Radiation Oncology
[8] Henry Ford Health,Department of Neurology
[9] Henry Ford Health,Department of Public Health Sciences
[10] Michigan State University,Department of Epidemiology and Biostatistics
[11] Wayne State University,Department of Neurology
来源
关键词
D O I
暂无
中图分类号
学科分类号
摘要
We introduce and validate four adaptive models (AMs) to perform a physiologically based Nested-Model-Selection (NMS) estimation of such microvascular parameters as forward volumetric transfer constant, Ktrans, plasma volume fraction, vp, and extravascular, extracellular space, ve, directly from Dynamic Contrast-Enhanced (DCE) MRI raw information without the need for an Arterial-Input Function (AIF). In sixty-six immune-compromised-RNU rats implanted with human U-251 cancer cells, DCE-MRI studies estimated pharmacokinetic (PK) parameters using a group-averaged radiological AIF and an extended Patlak-based NMS paradigm. One-hundred-ninety features extracted from raw DCE-MRI information were used to construct and validate (nested-cross-validation, NCV) four AMs for estimation of model-based regions and their three PK parameters. An NMS-based a priori knowledge was used to fine-tune the AMs to improve their performance. Compared to the conventional analysis, AMs produced stable maps of vascular parameters and nested-model regions less impacted by AIF-dispersion. The performance (Correlation coefficient and Adjusted R-squared for NCV test cohorts) of the AMs were: 0.914/0.834, 0.825/0.720, 0.938/0.880, and 0.890/0.792 for predictions of nested model regions, vp, Ktrans, and ve, respectively. This study demonstrates an application of AMs that quickens and improves DCE-MRI based quantification of microvasculature properties of tumors and normal tissues relative to conventional approaches.
引用
收藏
相关论文
共 50 条
  • [1] Dynamic contrast enhanced (DCE) MRI estimation of vascular parameters using knowledge-based adaptive models
    Bagher-Ebadian, Hassan
    Brown, Stephen L.
    Ghassemi, Mohammad M.
    Nagaraja, Tavarekere N.
    Valadie, Olivia Grahm
    Acharya, Prabhu C.
    Cabral, Glauber
    Divine, George
    Knight, Robert A.
    Lee, Ian Y.
    Xu, Jun H.
    Movsas, Benjamin
    Chetty, Indrin J.
    Ewing, James R.
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [2] Model-Based Blind Estimation of Kinetic Parameters in Dynamic Contrast Enhanced (DCE)-MRI
    Fluckiger, Jacob U.
    Schabel, Matthias C.
    DiBella, Edward V. R.
    MAGNETIC RESONANCE IN MEDICINE, 2009, 62 (06) : 1477 - 1486
  • [3] Dynamic Contrast-Enhanced (DCE) MRI
    Li, Xin
    Huang, Wei
    Holmes, James H.
    MAGNETIC RESONANCE IMAGING CLINICS OF NORTH AMERICA, 2024, 32 (01) : 47 - 61
  • [4] Robust estimation of hemo-dynamic parameters in traditional DCE-MRI models
    Hansen, Mikkel B.
    Tietze, Anna
    Haack, Soren
    Kallehauge, Jesper
    Mikkelsen, Irene K.
    Ostergaard, Leif
    Mouridsen, Kim
    PLOS ONE, 2019, 14 (01):
  • [5] DCE-Qnet: deep network quantification of dynamic contrast enhanced (DCE) MRI
    Cohen, Ouri
    Kargar, Soudabeh
    Woo, Sungmin
    Vargas, Alberto
    Otazo, Ricardo
    MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE, 2024, 37 (06): : 1077 - 1090
  • [6] Atherosclerotic plaque inflammation quantification using dynamic contrast-enhanced (DCE) MRI
    Chen, Huijun
    Wu, Tingting
    Kerwin, William S.
    Yuan, Chun
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2013, 3 (06) : 298 - 301
  • [7] Evaluation of adaptive perfusion models in dynamic contrast-enhanced ultrasound (DCE-US)
    Fromageau, Jeremie
    Tunariu, Nina
    Bamber, Jeffrey C.
    2012 IEEE INTERNATIONAL ULTRASONICS SYMPOSIUM (IUS), 2012, : 1311 - 1314
  • [8] Is it possible to predict the radiosensitivity of cervical cancer using dynamic contrast enhanced MRI (DCE-MRI)?
    Szluha, Lazanyi K.
    Pintye, E.
    Benko, K.
    Der, A.
    Poka, R.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2011, 187 : 48 - 48
  • [9] A Knowledge-Based Artificial Intelligence (AI) to Perform Nested Model Selection From Dynamic Contrast Enhanced (DCE)-MRI Pharmacokinetic Analyses of Brain Tumors in An Animal Model
    Bagher-Ebadian, H.
    Nagaraja, T.
    Cabral, G.
    Farmer, K.
    Valadie, O.
    Acharya, P.
    Movsas, B.
    Brown, S.
    Chetty, I.
    Ewing, J.
    MEDICAL PHYSICS, 2022, 49 (06) : E500 - E500
  • [10] Unified Bayesian network for uncertainty quantification of physiological parameters in dynamic contrast enhanced (DCE) MRI of the liver
    Dejene, Edengenet M.
    Brenner, Winfried
    Makowski, Marcus R.
    Kolbitsch, Christoph
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (21):