DCE-Qnet: deep network quantification of dynamic contrast enhanced (DCE) MRI

被引:0
|
作者
Cohen, Ouri [1 ]
Kargar, Soudabeh [1 ]
Woo, Sungmin [2 ]
Vargas, Alberto [2 ]
Otazo, Ricardo [1 ,2 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Dept Med Phys, 320 East 61st St, New York, NY 10025 USA
[2] Mem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY USA
基金
美国国家卫生研究院;
关键词
DCE; Deep learning; DRONE; Neural network; ARTERIAL INPUT FUNCTION; PARAMETERS; MODELS;
D O I
10.1007/s10334-024-01189-0
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
IntroductionQuantification of dynamic contrast-enhanced (DCE)-MRI has the potential to provide valuable clinical information, but robust pharmacokinetic modeling remains a challenge for clinical adoption.MethodsA 7-layer neural network called DCE-Qnet was trained on simulated DCE-MRI signals derived from the Extended Tofts model with the Parker arterial input function. Network training incorporated B1 inhomogeneities to estimate perfusion (Ktrans, vp, ve), tissue T1 relaxation, proton density and bolus arrival time (BAT). The accuracy was tested in a digital phantom in comparison to a conventional nonlinear least-squares fitting (NLSQ). In vivo testing was conducted in ten healthy subjects. Regions of interest in the cervix and uterine myometrium were used to calculate the inter-subject variability. The clinical utility was demonstrated on a cervical cancer patient. Test-retest experiments were used to assess reproducibility of the parameter maps in the tumor.ResultsThe DCE-Qnet reconstruction outperformed NLSQ in the phantom. The coefficient of variation (CV) in the healthy cervix varied between 5 and 51% depending on the parameter. Parameter values in the tumor agreed with previous studies despite differences in methodology. The CV in the tumor varied between 1 and 47%.ConclusionThe proposed approach provides comprehensive DCE-MRI quantification from a single acquisition. DCE-Qnet eliminates the need for separate T1 scan or BAT processing, leading to a reduction of 10 min per scan and more accurate quantification.
引用
收藏
页码:1077 / 1090
页数:14
相关论文
共 50 条
  • [1] Combination of deep learning reconstruction and quantification for dynamic contrast-enhanced (DCE) MRI
    Jing, Juntong
    Mekhanik, Anthony
    Schellenberg, Melanie
    Murray, Victor
    Cohen, Ouri
    Otazo, Ricardo
    MAGNETIC RESONANCE IMAGING, 2025, 117
  • [2] Dynamic Contrast-Enhanced (DCE) MRI
    Li, Xin
    Huang, Wei
    Holmes, James H.
    MAGNETIC RESONANCE IMAGING CLINICS OF NORTH AMERICA, 2024, 32 (01) : 47 - 61
  • [3] Unified Bayesian network for uncertainty quantification of physiological parameters in dynamic contrast enhanced (DCE) MRI of the liver
    Dejene, Edengenet M.
    Brenner, Winfried
    Makowski, Marcus R.
    Kolbitsch, Christoph
    PHYSICS IN MEDICINE AND BIOLOGY, 2023, 68 (21):
  • [4] Atherosclerotic plaque inflammation quantification using dynamic contrast-enhanced (DCE) MRI
    Chen, Huijun
    Wu, Tingting
    Kerwin, William S.
    Yuan, Chun
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2013, 3 (06) : 298 - 301
  • [5] Comparison of Ultrafast Dynamic Contrast-Enhanced (DCE) MRI with Conventional DCE MRI in the Morphological Assessment of Malignant Breast Lesions
    Ohashi, Akane
    Kataoka, Masako
    Iima, Mami
    Honda, Maya
    Ota, Rie
    Urushibata, Yuta
    Nickel, Marcel Dominik
    Toi, Masakazu
    Zackrisson, Sophia
    Nakamoto, Yuji
    DIAGNOSTICS, 2023, 13 (06)
  • [6] Phase-based Arterial Input Function Measurements in the Femoral Arteries for Quantification of Dynamic Contrast-enhanced (DCE) MRI and Comparison With DCE-CT
    Korporaal, Johannes G.
    van den Berg, Cornelis A. T.
    van Osch, Matthias J. P.
    Groenendaal, Greetje
    van Vulpen, Marco
    van der Heide, Uulke A.
    MAGNETIC RESONANCE IN MEDICINE, 2011, 66 (05) : 1267 - 1274
  • [7] Model selection for analysis of dynamic contrast enhanced MRI (DCE-MRI) data.
    Yankeelov T
    Welch E B
    Chakravarthy B
    Lee R
    Freehardt D
    Mayer, I
    Meszoely, I
    Kelly M
    Means-Powell J
    Gore J
    BREAST CANCER RESEARCH AND TREATMENT, 2007, 106 : S45 - S45
  • [8] Dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) of atherosclerotic plaque angiogenesis
    Claudia Calcagno
    Venkatesh Mani
    Sarayu Ramachandran
    Zahi A. Fayad
    Angiogenesis, 2010, 13 : 87 - 99
  • [9] Unfolding of Aliased Dynamic Acquisitions for the Acceleration of Breast Dynamic-Contrast Enhanced MRI (DCE-MRI)
    Pineda, F.
    Medved, M.
    Fan, X.
    Karczmar, G.
    MEDICAL PHYSICS, 2016, 43 (06) : 3391 - 3391
  • [10] Dynamic contrast enhanced (DCE) magnetic resonance imaging (MRI) of atherosclerotic plaque angiogenesis
    Calcagno, Claudia
    Mani, Venkatesh
    Ramachandran, Sarayu
    Fayad, Zahi A.
    ANGIOGENESIS, 2010, 13 (02) : 87 - 99