DCE-Qnet: deep network quantification of dynamic contrast enhanced (DCE) MRI

被引:0
|
作者
Cohen, Ouri [1 ]
Kargar, Soudabeh [1 ]
Woo, Sungmin [2 ]
Vargas, Alberto [2 ]
Otazo, Ricardo [1 ,2 ]
机构
[1] Mem Sloan Kettering Canc Ctr, Dept Med Phys, 320 East 61st St, New York, NY 10025 USA
[2] Mem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY USA
基金
美国国家卫生研究院;
关键词
DCE; Deep learning; DRONE; Neural network; ARTERIAL INPUT FUNCTION; PARAMETERS; MODELS;
D O I
10.1007/s10334-024-01189-0
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
IntroductionQuantification of dynamic contrast-enhanced (DCE)-MRI has the potential to provide valuable clinical information, but robust pharmacokinetic modeling remains a challenge for clinical adoption.MethodsA 7-layer neural network called DCE-Qnet was trained on simulated DCE-MRI signals derived from the Extended Tofts model with the Parker arterial input function. Network training incorporated B1 inhomogeneities to estimate perfusion (Ktrans, vp, ve), tissue T1 relaxation, proton density and bolus arrival time (BAT). The accuracy was tested in a digital phantom in comparison to a conventional nonlinear least-squares fitting (NLSQ). In vivo testing was conducted in ten healthy subjects. Regions of interest in the cervix and uterine myometrium were used to calculate the inter-subject variability. The clinical utility was demonstrated on a cervical cancer patient. Test-retest experiments were used to assess reproducibility of the parameter maps in the tumor.ResultsThe DCE-Qnet reconstruction outperformed NLSQ in the phantom. The coefficient of variation (CV) in the healthy cervix varied between 5 and 51% depending on the parameter. Parameter values in the tumor agreed with previous studies despite differences in methodology. The CV in the tumor varied between 1 and 47%.ConclusionThe proposed approach provides comprehensive DCE-MRI quantification from a single acquisition. DCE-Qnet eliminates the need for separate T1 scan or BAT processing, leading to a reduction of 10 min per scan and more accurate quantification.
引用
收藏
页码:1077 / 1090
页数:14
相关论文
共 50 条
  • [41] Dynamic contrast-enhanced (DCE) MRI assessment of microvascular characteristics in the murine orthotopic pancreatic cancer model
    Wu, Li
    Lv, Peng
    Zhang, Haitao
    Fu, Caixia
    Yao, Xiuzhong
    Wang, Chen
    Zeng, Mengsu
    Li, Yingyi
    Wang, Xiaolin
    MAGNETIC RESONANCE IMAGING, 2015, 33 (06) : 737 - 760
  • [42] Dynamic contrast enhanced-MRI (DCE-MRI) as a pharmacodynamic biomarker for pazopanib (PZ) in metastatic renal carcinoma (RC).
    Sweis, Randy F.
    Medved, Milica
    Towey, Shannon
    Karczmar, Greg S.
    Oto, Aytekin
    Szmulewitz, Russell Zelig
    O'Donnell, Peter H.
    Fishkin, Paul A. S.
    Stadler, Walter Michael
    JOURNAL OF CLINICAL ONCOLOGY, 2015, 33 (15)
  • [43] Differences in perfusion parameters between upper and lower lumbar vertebral segments with dynamic contrast-enhanced MRI (DCE MRI)
    Vasiliki Savvopoulou
    Thomas G. Maris
    Lampros Vlahos
    Lia Angela Moulopoulos
    European Radiology, 2008, 18 : 1876 - 1883
  • [44] Differences in perfusion parameters between upper and lower lumbar vertebral segments with dynamic contrast-enhanced MRI (DCE MRI)
    Savvopoulou, Vasiliki
    Maris, Thomas G.
    Vlahos, Lampros
    Moulopoulos, Lia Angela
    EUROPEAN RADIOLOGY, 2008, 18 (09) : 1876 - 1883
  • [45] MRI patterns of post-prostatectomy recurrence and of its response to salvage radiotherapy using Dynamic Contrast Enhanced (DCE) MRI
    Rischke, H.
    Nestle, U.
    Volegova-Neher, N.
    Henne, K.
    Schultze-Seemann, W.
    Grosu, A. L.
    STRAHLENTHERAPIE UND ONKOLOGIE, 2011, 187 (09) : 597 - 597
  • [46] Soft tissue sarcoma: can dynamic contrast-enhanced (DCE) MRI be used to predict the histological grade?
    Xiangwen Li
    Qimeng Wang
    Yanping Dou
    Yu Zhang
    Juan Tao
    Lin Yang
    Shaowu Wang
    Skeletal Radiology, 2020, 49 : 1829 - 1838
  • [47] Dynamic contrast enhanced MRI (DCE-MRI) as a potential predictor of clinical response in patients with inflammatory breast cancer (IBC).
    Doshi, A
    Wedam, SB
    Thomasson, DM
    Garcia-Eulate, RM
    Wise, BJ
    Yao, J
    Steinberg, SM
    Liewehr, DJ
    Choyke, P
    Swain, SM
    JOURNAL OF CLINICAL ONCOLOGY, 2005, 23 (16) : 24S - 24S
  • [48] Use of an internal reference in semi-quantitative dynamic contrast-enhanced MRI (DCE MRI) of indeterminate adnexal masses
    Tang, Y. Z.
    Benardin, L.
    Booth, T. C.
    Miquel, M. E.
    Dilks, P.
    Sahdev, A.
    Rockall, A. G.
    BRITISH JOURNAL OF RADIOLOGY, 2014, 87 (1043):
  • [49] Imaging and angiogenesis : DCE-US (dynamic contrast enhanced-ultrasonography)
    Lassau, Nathalie
    Roche, Alain
    BULLETIN DU CANCER, 2007, 94 : S247 - S253
  • [50] Multiparametric MRI in primary cerebral lymphoma: Correlation between diffusion kurtosis imaging (DKI), dynamic contrast enhanced (DCE) and dynamic Susceptibility contrast (DSC) MRI techniques
    Ferrazzoli, Valentina
    Minosse, Silvia
    Picchi, Eliseo
    Laudazi, Mario
    Pucci, Noemi
    Da Ros, Valerio
    Giocondo, Raffaella
    Garaci, Francesco
    Di Giuliano, Francesca
    PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2025, 129