Effects of Human Neural Stem Cells Overexpressing Neuroligin and Neurexin in a Spinal Cord Injury Model

被引:0
|
作者
Jeong, Jiwon [1 ]
Choi, Yunseo [1 ]
Kim, Narae [1 ]
Lee, Haneul [1 ]
Yoon, Eun-Jung [2 ]
Park, Dongsun [1 ]
机构
[1] Korea Natl Univ Educ, Dept Biol Educ, Cheongju 28173, Chungbuk, South Korea
[2] Kongju Natl Univ, Dept Life Sports Educator, Chungnam 32588, South Korea
基金
新加坡国家研究基金会;
关键词
synaptic regeneration; synaptic markers; NRXN; NLGN; spinal cord injury; stem cells; FUNCTIONAL RECOVERY; MECHANISMS; GROWTH;
D O I
10.3390/ijms25168744
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Recent studies have highlighted the therapeutic potential of stem cells for various diseases. However, unlike other tissues, brain tissue has a specific structure, consisting of synapses. These synapses not only transmit but also process and refine information. Therefore, synaptic regeneration plays a key role in therapy of neurodegenerative disorders. Neurexins (NRXNs) and neuroligins (NLGNs) are synaptic cell adhesion molecules that connect pre- and postsynaptic neurons at synapses, mediate trans-synaptic signaling, and shape neural network properties by specifying synaptic functions. In this study, we investigated the synaptic regeneration effect of human neural stem cells (NSCs) overexpressing NRXNs (F3.NRXN) and NLGNs (F3.NLGN) in a spinal cord injury model. Overexpression of NRXNs and NLGNs in the neural stem cells upregulated the expression of synaptophysin, PSD95, VAMP2, and synapsin, which are synaptic markers. The BMS scores indicated that the transplantation of F3.NRXN and F3.NLGN enhanced the recovery of locomotor function in adult rodents following spinal cord injury. Transplanted F3.NRXN and F3.NLGN differentiated into neurons and formed a synapse with the host cells in the spinal cord injury mouse model. In addition, F3.NRXN and F3.NLGN cells restored growth factors (GFs) and neurotrophic factors (NFs) and induced the proliferation of host cells. This study suggested that NSCs overexpressing NRXNs and NLGNs could be candidates for cell therapy in spinal cord injuries by facilitating synaptic regeneration.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Significant therapeutic effects of adult human multipotent neural cells on spinal cord injury
    Lee, Kee-Hang
    Pyeon, Hee-Jang
    Nam, Hyun
    Won, Jeong-Seob
    Hwang, Ji-Yoon
    Lee, Kyung-A
    Yeon, Je Young
    Hong, Seung-Chyul
    Nam, Do-Hyun
    Lee, Kyunghoon
    Lee, Sun-Ho
    Joo, Kyeung-Min
    STEM CELL RESEARCH, 2018, 31 : 71 - 78
  • [42] Human umbilical cord mesenchymal stem cells and the treatment of spinal cord injury
    CAO Fujiang and FENG Shiqing Department of OrthopaedicsGeneral Hospital of Tianjin Medical UniversityTianjin China
    中华医学杂志(英文版), 2009, (02) : 225 - 231
  • [43] Synergistic effects of neural stem cells and ibrutinib on neural tissue repair and functional recovery in a contusion mouse model of spinal cord injury
    Torabi, Somayyeh
    Zeraatpisheh, Zahra
    Anjamrooz, Seyed Hadi
    Ghanbari, Amir
    Raza, Syed Shadab
    Aligholi, Hadi
    Azari, Hassan
    NEUROSCIENCE LETTERS, 2025, 850
  • [44] Application of Human Umbilical Cord Mesenchymal Stem Cells in Spinal Cord Injury
    Yang, Peng
    Li, Yun
    Zhang, Jing-Tao
    Wang, Lin-Feng
    Shen, Yong
    JOURNAL OF BIOMATERIALS AND TISSUE ENGINEERING, 2017, 7 (05) : 393 - 400
  • [45] Human umbilical cord mesenchymal stem cells and the treatment of spinal cord injury
    Fu-jiang, Cao
    Shi-qing, Feng
    CHINESE MEDICAL JOURNAL, 2009, 122 (02) : 225 - 231
  • [46] Antiapoptotic Effect of Highly Secreted GMCSF From Neuronal Cell-specific GMCSF Overexpressing Neural Stem Cells in Spinal Cord Injury Model
    You, Youngsang
    Che, Lihua
    Lee, Hye Yeong
    Lee, Hye-Lan
    Yun, Yeomin
    Lee, Minhyung
    Oh, Jinsoo
    Ha, Yoon
    SPINE, 2015, 40 (24) : E1284 - E1291
  • [47] Effects of the Post-Spinal Cord Injury Microenvironment on the Differentiation Capacity of Human Neural Stem Cells Derived From Induced Pluripotent Stem Cells
    Lopez-Serrano, Clara
    Torres-Espin, Abel
    Hernandez, Joaquim
    Alvarez-Palomo, Ana B.
    Requena, Jordi
    Gasull, Xavier
    Edel, Michael J.
    Navarro, Xavier
    CELL TRANSPLANTATION, 2016, 25 (10) : 1833 - 1852
  • [48] Aligned collagen scaffold combination with human spinal cord-derived neural stem cells to improve spinal cord injury repair
    Zou, Yunlong
    Ma, Dezun
    Shen, He
    Zhao, Yannan
    Xu, Bai
    Fan, Yongheng
    Sun, Zheng
    Chen, Bing
    Xue, Weiwei
    Shi, Ya
    Xiao, Zhifeng
    Gu, Rui
    Dai, Jianwu
    BIOMATERIALS SCIENCE, 2020, 8 (18) : 5145 - 5156
  • [49] Challenges of Stem Cell Therapy for Spinal Cord Injury: Human Embryonic Stem Cells, Endogenous Neural Stem Cells, or Induced Pluripotent Stem Cells?
    Ronaghi, Mohammad
    Erceg, Slaven
    Moreno-Manzano, Victoria
    Stojkovic, Miodrag
    STEM CELLS, 2010, 28 (01) : 93 - 99
  • [50] Human Neural Stem Cells Survive, Differentiate, and Promote Recovery of Function in a Mouse Unilateral Cervical Spinal Cord Injury Model
    Hooshmand, M. J.
    Fousek, K.
    Lucero, J.
    Nishi, R.
    Huang, K.
    Jadhaw, N.
    Dhillon, J.
    Perez, H.
    Uchida, N.
    Cummings, B. J.
    Anderson, A. J.
    CELL TRANSPLANTATION, 2012, 21 (04) : 781 - 781