Progressive cross-level fusion network for RGB-D salient object detection

被引:1
|
作者
Li, Jianbao [1 ]
Pan, Chen [1 ]
Zheng, Yilin [1 ]
Zhang, Dongping [1 ]
机构
[1] China JiLiang Univ, Sch Informat Engn, Hangzhou, Peoples R China
关键词
Salient object detection; Progressive cross-level fusion; Self-modality attention refinement; Multi-scale spaces;
D O I
10.1016/j.jvcir.2024.104268
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Depth maps can provide supplementary information for salient object detection (SOD) and perform better in handling complex scenes. Most existing RGB-D methods only utilize deep cues at the same level, and few methods focus on the information linkage between cross-level features. In this study, we propose a Progressive Cross-level Fusion Network (PCF-Net). It ensures the cross-flow of cross-level features by gradually exploring deeper features, which promotes the interaction and fusion of information between different-level features. First, we designed a Cross-Level Guide Cross-Modal Fusion Module (CGCF) that utilizes the spatial information of upper-level features to suppress modal feature noise and to guide lower-level features for cross-modal feature fusion. Next, the proposed Semantic Enhancement Module (SEM) and Local Enhancement Module (LEM) are used to further introduce deeper features, enhance the high-level semantic information and lowlevel structural information of cross-modal features, and use self-modality attention refinement to improve the enhancement effect. Finally, the multi-scale aggregation decoder mines enhanced feature information in multi- scale spaces and effectively integrates cross-scale features. In this study, we conducted numerous experiments to demonstrate that the proposed PCF-Net outperforms 16 of the most advanced methods on six popular RGB-D SOD datasets.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] RGB-D Salient Object Detection by a CNN With Multiple Layers Fusion
    Huang, Rui
    Xing, Yan
    Wang, ZeZheng
    IEEE SIGNAL PROCESSING LETTERS, 2019, 26 (04) : 552 - 556
  • [42] CoCNN: RGB-D deep fusion for stereoscopic salient object detection
    Liang, Fangfang
    Duan, Lijuan
    Ma, Wei
    Qiao, Yuanhua
    Cai, Zhi
    Miao, Jun
    Ye, Qixiang
    PATTERN RECOGNITION, 2020, 104 (104)
  • [43] Cross-modal and multi-level feature refinement network for RGB-D salient object detection
    Gao, Yue
    Dai, Meng
    Zhang, Qing
    VISUAL COMPUTER, 2023, 39 (09): : 3979 - 3994
  • [44] Cross-modal and multi-level feature refinement network for RGB-D salient object detection
    Yue Gao
    Meng Dai
    Qing Zhang
    The Visual Computer, 2023, 39 : 3979 - 3994
  • [45] Transformer Fusion and Pixel-Level Contrastive Learning for RGB-D Salient Object Detection
    Wu, Jiesheng
    Hao, Fangwei
    Liang, Weiyun
    Xu, Jing
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 1011 - 1026
  • [46] RGB-D salient object detection: A survey
    Tao Zhou
    Deng-Ping Fan
    Ming-Ming Cheng
    Jianbing Shen
    Ling Shao
    ComputationalVisualMedia, 2021, 7 (01) : 37 - 69
  • [47] RGB-D salient object detection: A survey
    Zhou, Tao
    Fan, Deng-Ping
    Cheng, Ming-Ming
    Shen, Jianbing
    Shao, Ling
    COMPUTATIONAL VISUAL MEDIA, 2021, 7 (01) : 37 - 69
  • [48] RGB-D salient object detection: A survey
    Tao Zhou
    Deng-Ping Fan
    Ming-Ming Cheng
    Jianbing Shen
    Ling Shao
    Computational Visual Media, 2021, 7 : 37 - 69
  • [49] Salient Object Detection in RGB-D Videos
    Mou, Ao
    Lu, Yukang
    He, Jiahao
    Min, Dingyao
    Fu, Keren
    Zhao, Qijun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 6660 - 6675
  • [50] Calibrated RGB-D Salient Object Detection
    Ji, Wei
    Li, Jingjing
    Yu, Shuang
    Zhang, Miao
    Piao, Yongri
    Yao, Shunyu
    Bi, Qi
    Ma, Kai
    Zheng, Yefeng
    Lu, Huchuan
    Cheng, Li
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 9466 - 9476