Progressive cross-level fusion network for RGB-D salient object detection

被引:1
|
作者
Li, Jianbao [1 ]
Pan, Chen [1 ]
Zheng, Yilin [1 ]
Zhang, Dongping [1 ]
机构
[1] China JiLiang Univ, Sch Informat Engn, Hangzhou, Peoples R China
关键词
Salient object detection; Progressive cross-level fusion; Self-modality attention refinement; Multi-scale spaces;
D O I
10.1016/j.jvcir.2024.104268
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Depth maps can provide supplementary information for salient object detection (SOD) and perform better in handling complex scenes. Most existing RGB-D methods only utilize deep cues at the same level, and few methods focus on the information linkage between cross-level features. In this study, we propose a Progressive Cross-level Fusion Network (PCF-Net). It ensures the cross-flow of cross-level features by gradually exploring deeper features, which promotes the interaction and fusion of information between different-level features. First, we designed a Cross-Level Guide Cross-Modal Fusion Module (CGCF) that utilizes the spatial information of upper-level features to suppress modal feature noise and to guide lower-level features for cross-modal feature fusion. Next, the proposed Semantic Enhancement Module (SEM) and Local Enhancement Module (LEM) are used to further introduce deeper features, enhance the high-level semantic information and lowlevel structural information of cross-modal features, and use self-modality attention refinement to improve the enhancement effect. Finally, the multi-scale aggregation decoder mines enhanced feature information in multi- scale spaces and effectively integrates cross-scale features. In this study, we conducted numerous experiments to demonstrate that the proposed PCF-Net outperforms 16 of the most advanced methods on six popular RGB-D SOD datasets.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] MFCINet: multi-level feature and context information fusion network for RGB-D salient object detection
    Xia, Chenxing
    Chen, Difeng
    Gao, Xiuju
    Ge, Bin
    Li, Kuan-Ching
    Fang, Xianjin
    Zhang, Yan
    Yang, Ke
    JOURNAL OF SUPERCOMPUTING, 2024, 80 (02): : 2487 - 2513
  • [32] MFCINet: multi-level feature and context information fusion network for RGB-D salient object detection
    Chenxing Xia
    Difeng Chen
    Xiuju Gao
    Bin Ge
    Kuan-Ching Li
    Xianjin Fang
    Yan Zhang
    Ke Yang
    The Journal of Supercomputing, 2024, 80 : 2487 - 2513
  • [33] A cross-modal adaptive gated fusion generative adversarial network for RGB-D salient object detection
    Liu, Zhengyi
    Zhang, Wei
    Zhao, Peng
    NEUROCOMPUTING, 2020, 387 : 210 - 220
  • [34] DGFNet: Depth-Guided Cross-Modality Fusion Network for RGB-D Salient Object Detection
    Xiao, Fen
    Pu, Zhengdong
    Chen, Jiaqi
    Gao, Xieping
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 2648 - 2658
  • [35] CMA-SOD: cross-modal attention fusion network for RGB-D salient object detection
    Wang, Kexuan
    Liu, Chenhua
    Zhang, Rongfu
    VISUAL COMPUTER, 2024,
  • [36] Asymmetric cross-modality interaction network for RGB-D salient object detection
    Su, Yiming
    Gao, Haoran
    Wang, Mengyin
    Wang, Fasheng
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 275
  • [37] Cross-modal hierarchical interaction network for RGB-D salient object detection
    Bi, Hongbo
    Wu, Ranwan
    Liu, Ziqi
    Zhu, Huihui
    Zhang, Cong
    Xiang, Tian -Zhu
    PATTERN RECOGNITION, 2023, 136
  • [38] Cross-modality Discrepant Interaction Network for RGB-D Salient Object Detection
    Zhang, Chen
    Cong, Runmin
    Lin, Qinwei
    Ma, Lin
    Li, Feng
    Zhao, Yao
    Kwong, Sam
    PROCEEDINGS OF THE 29TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2021, 2021, : 2094 - 2102
  • [39] DCMNet: Discriminant and cross-modality network for RGB-D salient object detection
    Wang, Fasheng
    Wang, Ruimin
    Sun, Fuming
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 214
  • [40] RGB-D Fusion Based on Fuzzy Optimization for Salient Object Detection
    Bhuyan, Sudipta
    Sen, Debashis
    Deb, Sankha
    PATTERN RECOGNITION AND MACHINE INTELLIGENCE, PREMI 2023, 2023, 14301 : 523 - 531