Cross-modal and multi-level feature refinement network for RGB-D salient object detection

被引:7
|
作者
Gao, Yue [1 ]
Dai, Meng [1 ]
Zhang, Qing [1 ]
机构
[1] Shanghai Inst Technol, Sch Comp Sci & Informat Engn, Shanghai, Peoples R China
来源
VISUAL COMPUTER | 2023年 / 39卷 / 09期
基金
中国国家自然科学基金; 上海市自然科学基金;
关键词
RGB-D salient object detection; Cross-modal feature interaction; Multi-level feature fusion; Skip connection; FUSION;
D O I
10.1007/s00371-022-02543-w
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
RGB-D salient object detection (SOD) methods adopt depth maps as important supplementary information in order to identify salient objects more accurately. However, there are still two main challenges in the existing RGB-D SOD methods. One typical issue is how to obtain effective cross-modal features, and another issue is how to optimize the integration of multi-level features. To tackle these two issues, we propose a novel cross-modal and multi-level feature refinement network which equips with a cross-modal feature interaction module and a multi-level feature fusion module. Specifically, a cross-modal feature interaction module is designed to enhance depth features from both channel and spatial perspectives and then effectively integrate cross-modal features. Moreover, considering the characteristics of different levels of features, we propose a multi-level feature fusion module which combines contextual information from multi-level features by means of skip connection. Extensive experiments on five benchmark datasets demonstrate that our proposed model outperforms other 17 state-of-the-art RGB-D SOD methods.
引用
收藏
页码:3979 / 3994
页数:16
相关论文
共 50 条
  • [1] Cross-modal and multi-level feature refinement network for RGB-D salient object detection
    Yue Gao
    Meng Dai
    Qing Zhang
    [J]. The Visual Computer, 2023, 39 : 3979 - 3994
  • [2] Multi-level cross-modal interaction network for RGB-D salient object detection
    Huang, Zhou
    Chen, Huai-Xin
    Zhou, Tao
    Yang, Yun-Zhi
    Liu, Bi-Yuan
    [J]. NEUROCOMPUTING, 2021, 452 : 200 - 211
  • [3] RGB-D Salient Object Detection Based on Cross-Modal and Cross-Level Feature Fusion
    Peng, Yanbin
    Zhai, Zhinian
    Feng, Mingkun
    [J]. IEEE ACCESS, 2024, 12 : 45134 - 45146
  • [4] RGB-D Salient Object Detection Based on Cross-Modal and Cross-Level Feature Fusion
    Peng, Yanbin
    Zhai, Zhinian
    Feng, Mingkun
    [J]. IEEE Access, 2024, 12 : 45134 - 45146
  • [5] Cross-modal hierarchical interaction network for RGB-D salient object detection
    Bi, Hongbo
    Wu, Ranwan
    Liu, Ziqi
    Zhu, Huihui
    Zhang, Cong
    Xiang, Tian -Zhu
    [J]. PATTERN RECOGNITION, 2023, 136
  • [6] Feature Enhancement and Multi-scale Cross-Modal Attention for RGB-D Salient Object Detection
    Wan, Xin
    Yang, Gang
    Zhou, Boyi
    Liu, Chang
    Wang, Hangxu
    Wang, Yutao
    [J]. PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2021, PT II, 2021, 13020 : 409 - 420
  • [7] Depth Enhanced Cross-Modal Cascaded Network for RGB-D Salient Object Detection
    Zhao, Zhengyun
    Huang, Ziqing
    Chai, Xiuli
    Wang, Jun
    [J]. NEURAL PROCESSING LETTERS, 2023, 55 (01) : 361 - 384
  • [8] Cross-Modal Fusion and Progressive Decoding Network for RGB-D Salient Object Detection
    Hu, Xihang
    Sun, Fuming
    Sun, Jing
    Wang, Fasheng
    Li, Haojie
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2024, 132 (08) : 3067 - 3085
  • [9] Lightweight cross-modal transformer for RGB-D salient object detection
    Huang, Nianchang
    Yang, Yang
    Zhang, Qiang
    Han, Jungong
    Huang, Jin
    [J]. Computer Vision and Image Understanding, 2024, 249
  • [10] Depth Enhanced Cross-Modal Cascaded Network for RGB-D Salient Object Detection
    Zhengyun Zhao
    Ziqing Huang
    Xiuli Chai
    Jun Wang
    [J]. Neural Processing Letters, 2023, 55 : 361 - 384