Chaotic time series prediction based on physics-informed neural operator

被引:0
|
作者
Wang, Qixin [1 ]
Jiang, Lin [1 ]
Yan, Lianshan [1 ]
He, Xingchen [1 ]
Feng, Jiacheng [1 ]
Pan, Wei [1 ]
Luo, Bin [1 ]
机构
[1] Southwest Jiaotong Univ, Sch Informat Sci & Technol, Chengdu 611756, Peoples R China
基金
中国国家自然科学基金;
关键词
Chaos prediction; Time series prediction; Neural operator; Deep learning; Physics-informed; NETWORKS; SYSTEMS; MODEL;
D O I
10.1016/j.chaos.2024.115326
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper investigates the prediction of chaotic time series using physics-informed neural operator (PINO) with different driven methods, such as data-driven method, physics-driven method, and hybrid data-physics- driven method. Here, the chaotic time series are generated from two classical time delayed chaotic systems, including Mackey-Glass equation (MG) and Optoelectronic Oscillator (OEO). The simulation results from these two chaotic systems or experimental results from Optoelectronic Oscillator demonstrate that when there is enough data with good quality, it is possible to train the model solely using data-driven method. Conversely, when possessing complete mastery of the physical prior knowledge, it is also available to train the model solely using physics-driven method, indicating there is no need to prepare label datasets as in data-driven method. However, when dataset quality is poor, for example, contaminated by noise, and precise physical prior knowledge is not fully acquired, the hybrid method will have a better performance.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Is L2 Physics-Informed Loss Always Suitable for Training Physics-Informed Neural Network?
    Wang, Chuwei
    Li, Shanda
    He, Di
    Wang, Liwei
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 35 (NEURIPS 2022), 2022,
  • [42] Physics-Informed Neural Differential Equation Model
    Chen, Haowei
    Guo, Yu
    Yuan, Zhaolin
    Wang, Baojie
    Ban, Xiaojuan
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2024, 47 (04): : 90 - 97
  • [43] Physics-informed neural networks for consolidation of soils
    Zhang, Sheng
    Lan, Peng
    Li, Hai-Chao
    Tong, Chen-Xi
    Sheng, Daichao
    ENGINEERING COMPUTATIONS, 2022, 39 (07) : 2845 - 2865
  • [44] PINNProv: Provenance for Physics-Informed Neural Networks
    de Oliveira, Lyncoln S.
    Kunstmann, Liliane
    Pina, Debora
    de Oliveira, Daniel
    Mattoso, Marta
    2023 INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING WORKSHOPS, SBAC-PADW, 2023, : 16 - 23
  • [45] Physics-Informed Neural Networks for Power Systems
    Misyris, George S.
    Venzke, Andreas
    Chatzivasileiadis, Spyros
    2020 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2020,
  • [46] On physics-informed neural networks for quantum computers
    Markidis, Stefano
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2022, 8
  • [47] Physics-Informed Neural Networks for shell structures
    Bastek, Jan-Hendrik
    Kochmann, Dennis M.
    EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 2023, 97
  • [48] fPINNs: FRACTIONAL PHYSICS-INFORMED NEURAL NETWORKS
    Pang, Guofei
    Lu, Lu
    Karniadakis, George E. M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2019, 41 (04): : A2603 - A2626
  • [49] Physics-informed neural networks for diffraction tomography
    Amirhossein Saba
    Carlo Gigli
    Ahmed B.Ayoub
    Demetri Psaltis
    Advanced Photonics, 2022, 4 (06) : 48 - 59
  • [50] Physics-Informed Neural Networks for Quantum Control
    Norambuena, Ariel
    Mattheakis, Marios
    Gonzalez, Francisco J.
    Coto, Raul
    PHYSICAL REVIEW LETTERS, 2024, 132 (01)