An Introductory Guide to Artificial Intelligence in Interventional Radiology: Part 1 Foundational Knowledge

被引:0
|
作者
Warren, Blair Edward [1 ,2 ]
Bilbily, Alexander [1 ,3 ,4 ]
Gichoya, Judy Wawira [5 ]
Conway, Aaron [6 ]
Li, Ben [7 ]
Fawzy, Aly [1 ]
Barragan, Camilo [1 ,2 ]
Jaberi, Arash [1 ,2 ]
Mafeld, Sebastian [1 ,2 ]
机构
[1] Univ Toronto, Dept Med Imaging, Toronto, ON M5S 1A1, Canada
[2] Univ Hlth Network, Joint Dept Med Imaging, Toronto, ON, Canada
[3] 16 Bit Inc, Toronto, ON, Canada
[4] Univ Toronto, Sunnybrook Hlth Sci Ctr, Toronto, ON, Canada
[5] Emory Univ, Dept Radiol, Atlanta, GA USA
[6] Queensland Univ Technol, Prince Charles Hosp, Brisbane, Qld, Australia
[7] Univ Toronto, Dept Surg, Div Vasc Surg, Toronto, ON, Canada
关键词
artificial intelligence; interventional radiology; safety; harm-reduction;
D O I
10.1177/08465371241236376
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Artificial intelligence (AI) is rapidly evolving and has transformative potential for interventional radiology (IR) clinical practice. However, formal training in AI may be limited for many clinicians and therefore presents a challenge for initial implementation and trust in AI. An understanding of the foundational concepts in AI may help familiarize the interventional radiologist with the field of AI, thus facilitating understanding and participation in the development and deployment of AI. A pragmatic classification system of AI based on the complexity of the model may guide clinicians in the assessment of AI. Finally, the current state of AI in IR and the patterns of implementation are explored (pre-procedural, intra-procedural, and post-procedural). Visual Abstract This is a visual representation of the abstract. L'intelligence artificielle (IA) progresse & agrave; grands pas et promet de r & eacute;volutionner la pratique clinique de la radiologie d'intervention (RI). Toutefois, la formation officielle en mati & egrave;re d'IA de nombreux cliniciens s'av & egrave;re limit & eacute;e, ce qui pose des obstacles en vue de la mise en oe uvre initiale d'outils d'IA et nuit & agrave; la confiance des professionnels envers ceux-ci. Si les radiologistes sp & eacute;cialis & eacute;s en radiologie d'intervention d & eacute;tenaient des notions de base li & eacute;es & agrave; l'IA, et avaient donc une meilleure compr & eacute;hension globale de ce domaine, ils seraient plus favorables aux projets de mise au point et de d & eacute;ploiement d'outils d'IA et auraient davantage tendance & agrave; y participer activement. L'adoption d'un syst & egrave;me de classification de l'IA qui prend en compte la complexit & eacute; des mod & egrave;les peut aider les cliniciens & agrave; mieux & eacute;valuer ces technologies. Enfin, nous examinons la situation actuelle de l'IA dans le domaine de la RI et les diff & eacute;rents types de mise en oe uvre de la technologie, que ce soit avant, pendant, ou apr & egrave;s les proc & eacute;dures.
引用
收藏
页码:558 / 567
页数:10
相关论文
共 50 条
  • [1] An Introductory Guide to Artificial Intelligence in Interventional Radiology: Part 2: Implementation Considerations and Harms
    Warren, Blair Edward
    Bilbily, Alexander
    Gichoya, Judy Wawira
    Chartier, Lucas B.
    Fawzy, Aly
    Barragan, Camilo
    Jaberi, Arash
    Mafeld, Sebastian
    CANADIAN ASSOCIATION OF RADIOLOGISTS JOURNAL-JOURNAL DE L ASSOCIATION CANADIENNE DES RADIOLOGISTES, 2024, 75 (03): : 568 - 574
  • [2] Artificial Intelligence in Interventional Radiology
    Kallini, Joseph R.
    Moriarty, John M.
    SEMINARS IN INTERVENTIONAL RADIOLOGY, 2022, 39 (03) : 341 - 347
  • [3] Challenges of Implementing Artificial Intelligence in Interventional Radiology
    Mazaheri, Sina
    Loya, Mohammed F.
    Newsome, Janice
    Lungren, Mathew
    Gichoya, Judy Wawira
    SEMINARS IN INTERVENTIONAL RADIOLOGY, 2021, 38 (05) : 554 - 559
  • [4] Prime Time for Artificial Intelligence in Interventional Radiology
    Jarrel Seah
    Tom Boeken
    Marc Sapoval
    Gerard S. Goh
    CardioVascular and Interventional Radiology, 2022, 45 : 283 - 289
  • [5] Prime Time for Artificial Intelligence in Interventional Radiology
    Seah, Jarrel
    Boeken, Tom
    Sapoval, Marc
    Goh, Gerard S.
    CARDIOVASCULAR AND INTERVENTIONAL RADIOLOGY, 2022, 45 (03) : 283 - 289
  • [6] Artificial intelligence in interventional radiology: state of the art
    Glielmo, Pierluigi
    Fusco, Stefano
    Gitto, Salvatore
    Zantonelli, Giulia
    Albano, Domenico
    Messina, Carmelo
    Sconfienza, Luca Maria
    Mauri, Giovanni
    EUROPEAN RADIOLOGY EXPERIMENTAL, 2024, 8 (01)
  • [7] Applications and challenges of artificial intelligence in diagnostic and interventional radiology
    Waller, Joseph
    O'Connor, Aisling
    Rafaat, Eleeza
    Amireh, Ahmad
    Dempsey, John
    Martin, Clarissa
    Umair, Muhammad
    POLISH JOURNAL OF RADIOLOGY, 2022, 87 : E113 - E117
  • [8] CIRSE Position Paper on Artificial Intelligence in Interventional Radiology
    Najafi, Arash
    Cazzato, Roberto Luigi
    Meyer, Bernhard C.
    Pereira, Philippe L.
    Alberich, Angel
    Lopez, Antonio
    Ronot, Maxime
    Fritz, Jan
    Maas, Monique
    Benson, Sean
    Haage, Patrick
    Munoz, Fernando Gomez
    CARDIOVASCULAR AND INTERVENTIONAL RADIOLOGY, 2023, 46 (10) : 1303 - 1307
  • [9] CIRSE Position Paper on Artificial Intelligence in Interventional Radiology
    Arash Najafi
    Roberto Luigi Cazzato
    Bernhard C. Meyer
    Philippe L. Pereira
    Angel Alberich
    Antonio López
    Maxime Ronot
    Jan Fritz
    Monique Maas
    Sean Benson
    Patrick Haage
    Fernando Gomez Munoz
    CardioVascular and Interventional Radiology, 2023, 46 : 1303 - 1307
  • [10] The Artificial Intelligence in Digital Radiology: Part 1: The Challenges, Acceptance and Consensus
    Giansanti, Daniele
    Di Basilio, Francesco
    HEALTHCARE, 2022, 10 (03)