An Introductory Guide to Artificial Intelligence in Interventional Radiology: Part 1 Foundational Knowledge

被引:0
|
作者
Warren, Blair Edward [1 ,2 ]
Bilbily, Alexander [1 ,3 ,4 ]
Gichoya, Judy Wawira [5 ]
Conway, Aaron [6 ]
Li, Ben [7 ]
Fawzy, Aly [1 ]
Barragan, Camilo [1 ,2 ]
Jaberi, Arash [1 ,2 ]
Mafeld, Sebastian [1 ,2 ]
机构
[1] Univ Toronto, Dept Med Imaging, Toronto, ON M5S 1A1, Canada
[2] Univ Hlth Network, Joint Dept Med Imaging, Toronto, ON, Canada
[3] 16 Bit Inc, Toronto, ON, Canada
[4] Univ Toronto, Sunnybrook Hlth Sci Ctr, Toronto, ON, Canada
[5] Emory Univ, Dept Radiol, Atlanta, GA USA
[6] Queensland Univ Technol, Prince Charles Hosp, Brisbane, Qld, Australia
[7] Univ Toronto, Dept Surg, Div Vasc Surg, Toronto, ON, Canada
关键词
artificial intelligence; interventional radiology; safety; harm-reduction;
D O I
10.1177/08465371241236376
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Artificial intelligence (AI) is rapidly evolving and has transformative potential for interventional radiology (IR) clinical practice. However, formal training in AI may be limited for many clinicians and therefore presents a challenge for initial implementation and trust in AI. An understanding of the foundational concepts in AI may help familiarize the interventional radiologist with the field of AI, thus facilitating understanding and participation in the development and deployment of AI. A pragmatic classification system of AI based on the complexity of the model may guide clinicians in the assessment of AI. Finally, the current state of AI in IR and the patterns of implementation are explored (pre-procedural, intra-procedural, and post-procedural). Visual Abstract This is a visual representation of the abstract. L'intelligence artificielle (IA) progresse & agrave; grands pas et promet de r & eacute;volutionner la pratique clinique de la radiologie d'intervention (RI). Toutefois, la formation officielle en mati & egrave;re d'IA de nombreux cliniciens s'av & egrave;re limit & eacute;e, ce qui pose des obstacles en vue de la mise en oe uvre initiale d'outils d'IA et nuit & agrave; la confiance des professionnels envers ceux-ci. Si les radiologistes sp & eacute;cialis & eacute;s en radiologie d'intervention d & eacute;tenaient des notions de base li & eacute;es & agrave; l'IA, et avaient donc une meilleure compr & eacute;hension globale de ce domaine, ils seraient plus favorables aux projets de mise au point et de d & eacute;ploiement d'outils d'IA et auraient davantage tendance & agrave; y participer activement. L'adoption d'un syst & egrave;me de classification de l'IA qui prend en compte la complexit & eacute; des mod & egrave;les peut aider les cliniciens & agrave; mieux & eacute;valuer ces technologies. Enfin, nous examinons la situation actuelle de l'IA dans le domaine de la RI et les diff & eacute;rents types de mise en oe uvre de la technologie, que ce soit avant, pendant, ou apr & egrave;s les proc & eacute;dures.
引用
收藏
页码:558 / 567
页数:10
相关论文
共 50 条
  • [21] Interventional Radiology ex-machina: impact of Artificial Intelligence on practice
    Martina Gurgitano
    Salvatore Alessio Angileri
    Giovanni Maria Rodà
    Alessandro Liguori
    Marco Pandolfi
    Anna Maria Ierardi
    Bradford J. Wood
    Gianpaolo Carrafiello
    La radiologia medica, 2021, 126 : 998 - 1006
  • [22] Proceedings from the Society of Interventional Radiology Foundation Research Consensus Panel on Artificial Intelligence in Interventional Radiology: From Code to Bedside
    Chapiro, Julius
    Allen, Bibb
    Abajian, Aaron
    Wood, Bradford
    Kothary, Nishita
    Daye, Dania
    Bai, Harrison
    Sedrakyan, Art
    Diamond, Matthew
    Simonyan, Vahan
    McLennan, Gordon
    Abi-Jaoudeh, Nadine
    Pua, Bradley
    JOURNAL OF VASCULAR AND INTERVENTIONAL RADIOLOGY, 2022, 33 (09) : 1113 - 1120
  • [23] Artificial Intelligence, Augmented Reality, and Virtual Reality Advances and Applications in Interventional Radiology
    von Ende, Elizabeth
    Ryan, Sean
    Crain, Matthew A.
    Makary, Mina S.
    DIAGNOSTICS, 2023, 13 (05)
  • [24] Ethical Considerations for Artificial Intelligence in Interventional Radiology: Balancing Innovation and Patient Care
    Rockwell, Helena D.
    Cyphers, Eric D.
    Makary, Mina S.
    Keller, Eric J.
    SEMINARS IN INTERVENTIONAL RADIOLOGY, 2023, 40 (03) : 323 - 325
  • [25] Agents, multiagent systems and distributed artificial intelligence - an introductory guide to literature
    Weiß, Gerhard
    IT - Information Technology, 1998, 40 (04): : 40 - 42
  • [26] Artificial intelligence in the service of entrepreneurial finance: knowledge structure and the foundational algorithmic paradigm
    Kudelic, Robert
    Smaguc, Tamara
    Robinson, Sherry
    FINANCIAL INNOVATION, 2025, 11 (01)
  • [27] Artificial Intelligence in the Service of Entrepreneurial Finance: Knowledge Structure and the Foundational Algorithmic Paradigm
    Kudelić, Robert
    Šmaguc, Tamara
    Robinson, Sherry
    arXiv, 2023,
  • [28] A Practical Guide to Artificial Intelligence-Based Image Analysis in Radiology
    Weikert, Thomas
    Cyriac, Joshy
    Yang, Shan
    Nesic, Ivan
    Parmar, Victor
    Stieltjes, Bram
    INVESTIGATIVE RADIOLOGY, 2020, 55 (01) : 1 - 7
  • [29] Artificial Intelligence in Pharmacoepidemiology: A Systematic Review. Part 1-Overview of Knowledge Discovery Techniques in Artificial Intelligence
    Sessa, Maurizio
    Khan, Abdul Rauf
    Liang, David
    Andersen, Morten
    Kulahci, Murat
    FRONTIERS IN PHARMACOLOGY, 2020, 11
  • [30] Implementing Artificial Intelligence for Emergency Radiology Impacts Physicians' Knowledge and Perception
    Hoppe, Boj Friedrich
    Rueckel, Johannes
    Dikhtyar, Yevgeniy
    Heimer, Maurice
    Fink, Nicola
    Sabel, Bastian Oliver
    Ricke, Jens
    Rudolph, Jan
    Cyran, Clemens C.
    INVESTIGATIVE RADIOLOGY, 2024, 59 (05) : 404 - 412