Challenges of Implementing Artificial Intelligence in Interventional Radiology

被引:9
|
作者
Mazaheri, Sina [1 ]
Loya, Mohammed F. [1 ]
Newsome, Janice [1 ,2 ]
Lungren, Mathew [3 ]
Gichoya, Judy Wawira [1 ]
机构
[1] Emory Univ, Dept Radiol & Imaging Sci, Sch Med, Atlanta, GA 30322 USA
[2] Emory Univ, Dept Intervent Radiol, Sch Med, Atlanta, GA 30322 USA
[3] Stanford Univ, LPCH Pediat Intervent Radiol, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
artificial intelligence; machine learning; interventional radiology; use cases; challenges; RADIATION-EXPOSURE; FLUOROSCOPY;
D O I
10.1055/s-0041-1736659
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Artificial intelligence (AI) and deep learning (DL) remains a hot topic in medicine. DL is a subcategory of machine learning that takes advantage of multiple layers of interconnected neurons capable of analyzing immense amounts of data and "learning" patterns and offering predictions. It appears to be poised to fundamentally transform and help advance the field of diagnostic radiology, as heralded by numerous published use cases and number of FDA-cleared products. On the other hand, while multiple publications have touched upon many great hypothetical use cases of AI in interventional radiology (IR), the actual implementation of AI in IR clinical practice has been slow compared with the diagnostic world. In this article, we set out to examine a few challenges contributing to this scarcity of AI applications in IR, including inherent specialty challenges, regulatory hurdles, intellectual property, raising capital, and ethics. Owing to the complexities involved in implementing AI in IR, it is likely that IR will be one of the late beneficiaries of AI. In the meantime, it would be worthwhile to continuously engage in defining clinically relevant use cases and focus our limited resources on those that would benefit our patients the most.
引用
收藏
页码:554 / 559
页数:6
相关论文
共 50 条
  • [1] Applications and challenges of artificial intelligence in diagnostic and interventional radiology
    Waller, Joseph
    O'Connor, Aisling
    Rafaat, Eleeza
    Amireh, Ahmad
    Dempsey, John
    Martin, Clarissa
    Umair, Muhammad
    [J]. POLISH JOURNAL OF RADIOLOGY, 2022, 87 : E113 - E117
  • [2] Artificial Intelligence in Interventional Radiology
    Kallini, Joseph R.
    Moriarty, John M.
    [J]. SEMINARS IN INTERVENTIONAL RADIOLOGY, 2022, 39 (03) : 341 - 347
  • [3] Artificial intelligence in interventional radiology: state of the art
    Glielmo, Pierluigi
    Fusco, Stefano
    Gitto, Salvatore
    Zantonelli, Giulia
    Albano, Domenico
    Messina, Carmelo
    Sconfienza, Luca Maria
    Mauri, Giovanni
    [J]. EUROPEAN RADIOLOGY EXPERIMENTAL, 2024, 8 (01)
  • [4] Prime Time for Artificial Intelligence in Interventional Radiology
    Jarrel Seah
    Tom Boeken
    Marc Sapoval
    Gerard S. Goh
    [J]. CardioVascular and Interventional Radiology, 2022, 45 : 283 - 289
  • [5] Prime Time for Artificial Intelligence in Interventional Radiology
    Seah, Jarrel
    Boeken, Tom
    Sapoval, Marc
    Goh, Gerard S.
    [J]. CARDIOVASCULAR AND INTERVENTIONAL RADIOLOGY, 2022, 45 (03) : 283 - 289
  • [6] A holistic approach to implementing artificial intelligence in radiology
    Kim, Bomi
    Romeijn, Stephan
    van Buchem, Mark
    Mehrizi, Mohammad Hosein Rezazade
    Grootjans, Willem
    [J]. INSIGHTS INTO IMAGING, 2024, 15 (01)
  • [7] A holistic approach to implementing artificial intelligence in radiology
    Bomi Kim
    Stephan Romeijn
    Mark van Buchem
    Mohammad Hosein Rezazade Mehrizi
    Willem Grootjans
    [J]. Insights into Imaging, 15
  • [8] Artificial Intelligence in Radiology: Opportunities and Challenges
    Flory, Marta N.
    Napel, Sandy
    Tsai, Emily B.
    [J]. SEMINARS IN ULTRASOUND CT AND MRI, 2024, 45 (02) : 152 - 160
  • [9] CIRSE Position Paper on Artificial Intelligence in Interventional Radiology
    Najafi, Arash
    Cazzato, Roberto Luigi
    Meyer, Bernhard C.
    Pereira, Philippe L.
    Alberich, Angel
    Lopez, Antonio
    Ronot, Maxime
    Fritz, Jan
    Maas, Monique
    Benson, Sean
    Haage, Patrick
    Munoz, Fernando Gomez
    [J]. CARDIOVASCULAR AND INTERVENTIONAL RADIOLOGY, 2023, 46 (10) : 1303 - 1307
  • [10] CIRSE Position Paper on Artificial Intelligence in Interventional Radiology
    Arash Najafi
    Roberto Luigi Cazzato
    Bernhard C. Meyer
    Philippe L. Pereira
    Angel Alberich
    Antonio López
    Maxime Ronot
    Jan Fritz
    Monique Maas
    Sean Benson
    Patrick Haage
    Fernando Gomez Munoz
    [J]. CardioVascular and Interventional Radiology, 2023, 46 : 1303 - 1307