Challenges of Implementing Artificial Intelligence in Interventional Radiology

被引:9
|
作者
Mazaheri, Sina [1 ]
Loya, Mohammed F. [1 ]
Newsome, Janice [1 ,2 ]
Lungren, Mathew [3 ]
Gichoya, Judy Wawira [1 ]
机构
[1] Emory Univ, Dept Radiol & Imaging Sci, Sch Med, Atlanta, GA 30322 USA
[2] Emory Univ, Dept Intervent Radiol, Sch Med, Atlanta, GA 30322 USA
[3] Stanford Univ, LPCH Pediat Intervent Radiol, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
artificial intelligence; machine learning; interventional radiology; use cases; challenges; RADIATION-EXPOSURE; FLUOROSCOPY;
D O I
10.1055/s-0041-1736659
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Artificial intelligence (AI) and deep learning (DL) remains a hot topic in medicine. DL is a subcategory of machine learning that takes advantage of multiple layers of interconnected neurons capable of analyzing immense amounts of data and "learning" patterns and offering predictions. It appears to be poised to fundamentally transform and help advance the field of diagnostic radiology, as heralded by numerous published use cases and number of FDA-cleared products. On the other hand, while multiple publications have touched upon many great hypothetical use cases of AI in interventional radiology (IR), the actual implementation of AI in IR clinical practice has been slow compared with the diagnostic world. In this article, we set out to examine a few challenges contributing to this scarcity of AI applications in IR, including inherent specialty challenges, regulatory hurdles, intellectual property, raising capital, and ethics. Owing to the complexities involved in implementing AI in IR, it is likely that IR will be one of the late beneficiaries of AI. In the meantime, it would be worthwhile to continuously engage in defining clinically relevant use cases and focus our limited resources on those that would benefit our patients the most.
引用
收藏
页码:554 / 559
页数:6
相关论文
共 50 条
  • [41] Challenges in research opportunities for interventional radiology trainees and interventional radiology in the UK
    Kilic, Y.
    Weston-Petrides, G. K.
    Nergiz, A. Ihsan
    Morgan, R.
    Shaygi, B.
    [J]. CLINICAL RADIOLOGY, 2024, 79 (02) : 81 - 84
  • [42] Artificial intelligence in radiology
    Ahmed Hosny
    Chintan Parmar
    John Quackenbush
    Lawrence H. Schwartz
    Hugo J. W. L. Aerts
    [J]. Nature Reviews Cancer, 2018, 18 : 500 - 510
  • [43] Artificial intelligence in radiology
    Faggioni, Lorenzo
    Coppola, Francesca
    [J]. EUROPEAN JOURNAL OF RADIOLOGY OPEN, 2024, 12
  • [44] Artificial intelligence in radiology
    Hosny, Ahmed
    Parmar, Chintan
    Quackenbush, John
    Schwartz, Lawrence H.
    Aerts, Hugo J. W. L.
    [J]. NATURE REVIEWS CANCER, 2018, 18 (08) : 500 - 510
  • [45] Applications and challenges of implementing artificial intelligence in orthodontics: A primer for orthodontists
    Lee, Min Kyeong
    Allareddy, Veerasathpurush
    Rampa, Sankeerth
    Elnagar, Mohammed H.
    Oubaidin, Maysaa
    Yadav, Sumit
    Venugopalan, Shankar Rengasamy
    [J]. SEMINARS IN ORTHODONTICS, 2024, 30 (01) : 72 - 76
  • [46] The Artificial Intelligence in Digital Radiology: Part 1: The Challenges, Acceptance and Consensus
    Giansanti, Daniele
    Di Basilio, Francesco
    [J]. HEALTHCARE, 2022, 10 (03)
  • [47] An Introductory Guide to Artificial Intelligence in Interventional Radiology: Part 2: Implementation Considerations and Harms
    Warren, Blair Edward
    Bilbily, Alexander
    Gichoya, Judy Wawira
    Chartier, Lucas B.
    Fawzy, Aly
    Barragan, Camilo
    Jaberi, Arash
    Mafeld, Sebastian
    [J]. CANADIAN ASSOCIATION OF RADIOLOGISTS JOURNAL-JOURNAL DE L ASSOCIATION CANADIENNE DES RADIOLOGISTES, 2024, 75 (03): : 568 - 574
  • [48] Challenges in Interventional Radiology: The Pregnant Patient
    Moon, Eunice K.
    Wang, Weiping
    Newman, James S.
    Bayona-Molano, Maria Del Pilar
    [J]. SEMINARS IN INTERVENTIONAL RADIOLOGY, 2013, 30 (04) : 394 - 402
  • [49] Implementing artificial intelligence in civil procedure and legal education: challenges and perspectives
    Davydova, Iryna
    Zhurylo, Serhii
    Havrik, Roman
    Yakymchuk, Svitlana
    Samilo, Hanna
    [J]. EDUWEB-REVISTA DE TECNOLOGIA DE INFORMACION Y COMUNICACION EN EDUCACION, 2023, 17 (04): : 154 - 164
  • [50] Artificial intelligence in interventional pulmonology
    Ishiwata, Tsukasa
    Yasufuku, Kazuhiro
    [J]. CURRENT OPINION IN PULMONARY MEDICINE, 2024, 30 (01) : 92 - 98