Input estimation from discrete workload observations in a Lévy-driven storage system

被引:0
|
作者
Nieman, Dennis [1 ]
Mandjes, Michel [2 ]
Ravner, Liron [3 ]
机构
[1] Vrije Univ Amsterdam, Dept Math, Amsterdam, Netherlands
[2] Leiden Univ, Math Inst, Leiden, Netherlands
[3] Univ Haifa, Dept Stat, Haifa, Israel
关键词
L & eacute; vy-driven storage system; Discrete workload observations; High-frequency sampling; NONPARAMETRIC-ESTIMATION; LEVY PROCESS;
D O I
10.1016/j.spl.2024.110250
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Our goal is to estimate the characteristic exponent of the input to a L & eacute;vy-driven storage system from a sample of equispaced workload observations. The estimator relies on an approximate moment equation associated with the Laplace-Stieltjes transform of the workload at exponentially distributed sampling times. The estimator is pointwise consistent for any observation grid. Moreover, a high frequency sampling scheme yields asymptotically normal estimation errors for a class of input processes. A resampling scheme that uses the available information in a more efficient manner is suggested and assessed via simulation experiments.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] L,vy-driven GPS queues with heavy-tailed input
    Debicki, Krzysztof
    Liu, Peng
    Mandjes, Michel
    Sierpinska-Tulacz, Iwona
    QUEUEING SYSTEMS, 2017, 85 (3-4) : 249 - 267
  • [2] Queue input estimation from discrete workload observations
    Ravner, Liron
    QUEUEING SYSTEMS, 2022, 100 (3-4) : 541 - 543
  • [3] Queue input estimation from discrete workload observations
    Liron Ravner
    Queueing Systems, 2022, 100 : 541 - 543
  • [4] Tail asymptotics for a Lévy-driven tandem queue with an intermediate input
    Masakiyo Miyazawa
    Tomasz Rolski
    Queueing Systems, 2009, 63
  • [5] Lévy-driven GPS queues with heavy-tailed input
    Krzysztof Dȩbicki
    Peng Liu
    Michel Mandjes
    Iwona Sierpińska-Tułacz
    Queueing Systems, 2017, 85 : 249 - 267
  • [6] Lévy-Driven Carma Processes
    P. J. Brockwell
    Annals of the Institute of Statistical Mathematics, 2001, 53 : 113 - 124
  • [7] Semi-Lévy-Driven CARMA Process: Estimation and Prediction
    Navideh Modarresi
    Saeid Rezakhah
    Mohammad Mohammadi
    Journal of Statistical Theory and Practice, 2023, 17
  • [8] Drift estimation for a Lévy-driven Ornstein–Uhlenbeck process with heavy tails
    Alexander Gushchin
    Ilya Pavlyukevich
    Marian Ritsch
    Statistical Inference for Stochastic Processes, 2020, 23 : 553 - 570
  • [9] Lévy-Driven Langevin Systems: Targeted Stochasticity
    Iddo Eliazar
    Joseph Klafter
    Journal of Statistical Physics, 2003, 111 : 739 - 768
  • [10] Lévy-driven Volterra Equations in Space and Time
    Carsten Chong
    Journal of Theoretical Probability, 2017, 30 : 1014 - 1058