Lévy-driven GPS queues with heavy-tailed input

被引:0
|
作者
Krzysztof Dȩbicki
Peng Liu
Michel Mandjes
Iwona Sierpińska-Tułacz
机构
[1] University of Wrocław,Mathematical Institute
[2] University of Lausanne,Department of Actuarial Science
[3] UNIL-Dorigny,Korteweg
[4] University of Amsterdam,de Vries Institute for Mathematics
来源
Queueing Systems | 2017年 / 85卷
关键词
Lévy process; Fluid model; Queue; General processor sharing; Exact asymptotics; Primary: 60K25; Secondary: 90B22; 60G51;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we derive exact large buffer asymptotics for a two-class generalized processor sharing (GPS) model, under the assumption that the input traffic streams generated by both classes correspond to heavy-tailed Lévy processes. Four scenarios need to be distinguished, which differ in terms of (i) the level of heavy-tailedness of the driving Lévy processes as well as (ii) the values of the corresponding mean rates relative to the GPS weights. The derived results are illustrated by two important special cases, in which the queues’ inputs are modeled by heavy-tailed compound Poisson processes and by α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-stable Lévy motions.
引用
收藏
页码:249 / 267
页数:18
相关论文
共 50 条
  • [1] L,vy-driven GPS queues with heavy-tailed input
    Debicki, Krzysztof
    Liu, Peng
    Mandjes, Michel
    Sierpinska-Tulacz, Iwona
    QUEUEING SYSTEMS, 2017, 85 (3-4) : 249 - 267
  • [2] Asymptotic analysis of Lévy-driven tandem queues
    Pascal Lieshout
    Michel Mandjes
    Queueing Systems, 2008, 60 : 203 - 226
  • [3] Fluid queues with heavy-tailed M/G/∞ input
    Borst, S
    Zwart, B
    MATHEMATICS OF OPERATIONS RESEARCH, 2005, 30 (04) : 852 - 879
  • [4] Tail asymptotics for a Lévy-driven tandem queue with an intermediate input
    Masakiyo Miyazawa
    Tomasz Rolski
    Queueing Systems, 2009, 63
  • [5] Lévy-Driven Carma Processes
    P. J. Brockwell
    Annals of the Institute of Statistical Mathematics, 2001, 53 : 113 - 124
  • [6] Stochastic SIR Lévy Jump Model with Heavy-Tailed Increments
    Nicolas Privault
    Liang Wang
    Journal of Nonlinear Science, 2021, 31
  • [8] A reduced-peak equivalence for queues with a mixture of light-tailed and heavy-tailed input flows
    Borst, S
    Zwart, B
    ADVANCES IN APPLIED PROBABILITY, 2003, 35 (03) : 793 - 805
  • [9] Drift estimation for a Lévy-driven Ornstein–Uhlenbeck process with heavy tails
    Alexander Gushchin
    Ilya Pavlyukevich
    Marian Ritsch
    Statistical Inference for Stochastic Processes, 2020, 23 : 553 - 570
  • [10] Input estimation from discrete workload observations in a Lévy-driven storage system
    Nieman, Dennis
    Mandjes, Michel
    Ravner, Liron
    STATISTICS & PROBABILITY LETTERS, 2025, 216