Input estimation from discrete workload observations in a Lévy-driven storage system

被引:0
|
作者
Nieman, Dennis [1 ]
Mandjes, Michel [2 ]
Ravner, Liron [3 ]
机构
[1] Vrije Univ Amsterdam, Dept Math, Amsterdam, Netherlands
[2] Leiden Univ, Math Inst, Leiden, Netherlands
[3] Univ Haifa, Dept Stat, Haifa, Israel
关键词
L & eacute; vy-driven storage system; Discrete workload observations; High-frequency sampling; NONPARAMETRIC-ESTIMATION; LEVY PROCESS;
D O I
10.1016/j.spl.2024.110250
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Our goal is to estimate the characteristic exponent of the input to a L & eacute;vy-driven storage system from a sample of equispaced workload observations. The estimator relies on an approximate moment equation associated with the Laplace-Stieltjes transform of the workload at exponentially distributed sampling times. The estimator is pointwise consistent for any observation grid. Moreover, a high frequency sampling scheme yields asymptotically normal estimation errors for a class of input processes. A resampling scheme that uses the available information in a more efficient manner is suggested and assessed via simulation experiments.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Portfolio optimization in a defaultable Lévy-driven market model
    Stefano Pagliarani
    Tiziano Vargiolu
    OR Spectrum, 2015, 37 : 617 - 654
  • [22] High-frequency estimation of the L?vy-driven Graph Ornstein-Uhlenbeck process
    Courgeau, Valentin
    Veraart, Almut E. D.
    ELECTRONIC JOURNAL OF STATISTICS, 2022, 16 (02): : 4863 - 4925
  • [23] Estimation of L,vy-driven Ornstein-Uhlenbeck processes: application to modeling of and fuel-switching
    Chevallier, Julien
    Goutte, Stephane
    ANNALS OF OPERATIONS RESEARCH, 2017, 255 (1-2) : 169 - 197
  • [24] Ruin probabilities for a Lévy-driven generalised Ornstein–Uhlenbeck process
    Yuri Kabanov
    Serguei Pergamenshchikov
    Finance and Stochastics, 2020, 24 : 39 - 69
  • [25] An optimization approach to weak approximation of lévy-driven stochastic differential equations
    Kashima K.
    Kawai R.
    Lecture Notes in Control and Information Sciences, 2010, 398 : 263 - 272
  • [26] Estimation for Constantinides-Ingersol model with small Lévy noises from discrete observations
    Wei, Chao
    Lian, Xinru
    Yuan, Feimeng
    IAENG International Journal of Applied Mathematics, 2020, 50 (01) : 1 - 6
  • [27] On Lévy-driven vacation models with correlated busy periods and service interruptions
    Offer Kella
    Onno Boxma
    Michel Mandjes
    Queueing Systems, 2010, 64 : 359 - 382
  • [28] Correction to: Multilevel particle filters for Lévy-driven stochastic differential equations
    Ajay Jasra
    Kody J. H. Law
    Prince Peprah Osei
    Statistics and Computing, 2019, 29 : 851 - 851
  • [29] Strong stochastic persistence of some Lévy-driven Lotka–Volterra systems
    Leonardo Videla
    Journal of Mathematical Biology, 2022, 84
  • [30] Ergodic Control for Lévy-Driven Linear Stochastic Equations in Hilbert Spaces
    K. Kadlec
    B. Maslowski
    Applied Mathematics & Optimization, 2019, 79 : 547 - 565