Input estimation from discrete workload observations in a Lévy-driven storage system

被引:0
|
作者
Nieman, Dennis [1 ]
Mandjes, Michel [2 ]
Ravner, Liron [3 ]
机构
[1] Vrije Univ Amsterdam, Dept Math, Amsterdam, Netherlands
[2] Leiden Univ, Math Inst, Leiden, Netherlands
[3] Univ Haifa, Dept Stat, Haifa, Israel
关键词
L & eacute; vy-driven storage system; Discrete workload observations; High-frequency sampling; NONPARAMETRIC-ESTIMATION; LEVY PROCESS;
D O I
10.1016/j.spl.2024.110250
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Our goal is to estimate the characteristic exponent of the input to a L & eacute;vy-driven storage system from a sample of equispaced workload observations. The estimator relies on an approximate moment equation associated with the Laplace-Stieltjes transform of the workload at exponentially distributed sampling times. The estimator is pointwise consistent for any observation grid. Moreover, a high frequency sampling scheme yields asymptotically normal estimation errors for a class of input processes. A resampling scheme that uses the available information in a more efficient manner is suggested and assessed via simulation experiments.
引用
收藏
页数:9
相关论文
共 50 条