CEH-YOLO: A composite enhanced YOLO-based model for underwater object detection

被引:1
|
作者
Feng, Jiangfan [1 ,2 ]
Jin, Tao [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Comp Sci & Technol, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Key Lab Tourism Multisource Data Percept & Decis, Minist Culture & Tourism, TMDPD,MCT, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
Underwater object detection; Deep learning; Computational methods; Automated classification; Multiscale convolution; IMAGE-ENHANCEMENT;
D O I
10.1016/j.ecoinf.2024.102758
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Advances in underwater recording and processing systems have highlighted the need for automated methods dedicated to the accurate detection and tracking of small underwater objects in imagery. However, the unique characteristics of underwater optical images, including low contrast, color variations, and the presence of small objects, pose significant challenges. This paper presents CEH-YOLO, a variant of YOLOv8, incorporating a highorder deformable attention (HDA) module to enhance spatial feature extraction and interaction by prioritizing key areas within the model. Additionally, the enhanced spatial pyramid pooling-fast (ESPPF) module is integrated to enhance the extraction of object attributes, such as color and texture, which is particularly beneficial in scenarios with small or overlapping objects. The customized composite detection (CD) module further improves the accuracy and inclusivity of object detection. Moreover, the model uses the WIoU v3 technique for bounding box loss calculations, effectively addressing regression challenges related to bounding boxes under standard and extreme conditions. The experimental results show the model's exceptional performance, achieving mean average precisions of 88.4% and 87.7% on the DUO and UTDAC2020 datasets, respectively. Notably, the model operates at a rapid detection speed of 156 FPS, fulfilling critical real-time detection needs. With a concise model size of 4.4 M and a moderate computational complexity of 11.6 GFLOPs, it is highly suitable for integration into underwater detection systems.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] YOLO-Anti: YOLO-based counterattack model for unseen congested object detection
    Wang, Kun
    Liu, Maozhen
    PATTERN RECOGNITION, 2022, 131
  • [2] YOLO-Based Efficient Vehicle Object Detection
    Liu, Ting-Na
    Zhu, Zhong-Jie
    Bai, Yong-Qiang
    Liao, Guang-Long
    Chen, Yin-Xue
    Journal of Computers (Taiwan), 2022, 33 (04): : 69 - 79
  • [3] YOLO-Based Object Detection in Industry 4.0 Fischertechnik Model Environment
    Schneidereit, Slavomira
    Yarahmadi, Ashkan Mansouri
    Schneidereit, Toni
    Breuss, Michael
    Gebauer, Marc
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, INTELLISYS 2023, 2024, 823 : 1 - 20
  • [4] An optimized YOLO-based object detection model for crop harvesting system
    Junos, Mohamad Haniff
    Mohd Khairuddin, Anis Salwa
    Thannirmalai, Subbiah
    Dahari, Mahidzal
    IET IMAGE PROCESSING, 2021, 15 (09) : 2112 - 2125
  • [5] RescueNet: YOLO-based object detection model for detection and counting of flood survivors
    B. V. Balaji Prabhu
    R. Lakshmi
    R. Ankitha
    M. S. Prateeksha
    N. C. Priya
    Modeling Earth Systems and Environment, 2022, 8 : 4509 - 4516
  • [6] YOLO-DA: An Efficient YOLO-Based Detector for Remote Sensing Object Detection
    Lin, Jiehua
    Zhao, Yan
    Wang, Shigang
    Tang, Yu
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [7] RescueNet: YOLO-based object detection model for detection and counting of flood survivors
    Prabhu, B. V. Balaji
    Lakshmi, R.
    Ankitha, R.
    Prateeksha, M. S.
    Priya, N. C.
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2022, 8 (04) : 4509 - 4516
  • [8] SenseLite: A YOLO-Based Lightweight Model for Small Object Detection in Aerial Imagery
    Han, Tianxin
    Dong, Qing
    Sun, Lina
    SENSORS, 2023, 23 (19)
  • [9] NATCA YOLO-Based Small Object Detection for Aerial Images
    Zhu, Yicheng
    Ai, Zhenhua
    Yan, Jinqiang
    Li, Silong
    Yang, Guowei
    Yu, Teng
    INFORMATION, 2024, 15 (07)
  • [10] YOLO-based Object Detection Models: A Review and its Applications
    Vijayakumar, Ajantha
    Vairavasundaram, Subramaniyaswamy
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (35) : 83535 - 83574