CEH-YOLO: A composite enhanced YOLO-based model for underwater object detection

被引:1
|
作者
Feng, Jiangfan [1 ,2 ]
Jin, Tao [1 ]
机构
[1] Chongqing Univ Posts & Telecommun, Sch Comp Sci & Technol, Chongqing 400065, Peoples R China
[2] Chongqing Univ Posts & Telecommun, Key Lab Tourism Multisource Data Percept & Decis, Minist Culture & Tourism, TMDPD,MCT, Chongqing 400065, Peoples R China
基金
中国国家自然科学基金;
关键词
Underwater object detection; Deep learning; Computational methods; Automated classification; Multiscale convolution; IMAGE-ENHANCEMENT;
D O I
10.1016/j.ecoinf.2024.102758
中图分类号
Q14 [生态学(生物生态学)];
学科分类号
071012 ; 0713 ;
摘要
Advances in underwater recording and processing systems have highlighted the need for automated methods dedicated to the accurate detection and tracking of small underwater objects in imagery. However, the unique characteristics of underwater optical images, including low contrast, color variations, and the presence of small objects, pose significant challenges. This paper presents CEH-YOLO, a variant of YOLOv8, incorporating a highorder deformable attention (HDA) module to enhance spatial feature extraction and interaction by prioritizing key areas within the model. Additionally, the enhanced spatial pyramid pooling-fast (ESPPF) module is integrated to enhance the extraction of object attributes, such as color and texture, which is particularly beneficial in scenarios with small or overlapping objects. The customized composite detection (CD) module further improves the accuracy and inclusivity of object detection. Moreover, the model uses the WIoU v3 technique for bounding box loss calculations, effectively addressing regression challenges related to bounding boxes under standard and extreme conditions. The experimental results show the model's exceptional performance, achieving mean average precisions of 88.4% and 87.7% on the DUO and UTDAC2020 datasets, respectively. Notably, the model operates at a rapid detection speed of 156 FPS, fulfilling critical real-time detection needs. With a concise model size of 4.4 M and a moderate computational complexity of 11.6 GFLOPs, it is highly suitable for integration into underwater detection systems.
引用
收藏
页数:16
相关论文
共 50 条
  • [31] YEEHaD: YOLO-based Extremely Efficient Hand Detection
    Benitez-Garcia, Gibran
    Takahashi, Hiroki
    INTERNATIONAL WORKSHOP ON ADVANCED IMAGING TECHNOLOGY, IWAIT 2024, 2024, 13164
  • [32] YOLO-Based Object Detection for Separate Collection of Recyclables and Capacity Monitoring of Trash Bins
    Wahyutama, Aria Bisma
    Hwang, Mintae
    ELECTRONICS, 2022, 11 (09)
  • [33] Using YOLO-Based Pedestrian Detection for Monitoring UAV
    Zhang, Depei
    Shao, Yanhua
    Mei, Yanying
    Chu, Hongyu
    Zhang, Xiaoqiang
    Zhan, Huayi
    Rao, Yunbo
    TENTH INTERNATIONAL CONFERENCE ON GRAPHICS AND IMAGE PROCESSING (ICGIP 2018), 2019, 11069
  • [34] YOLO-based robotic grasping
    Kim, Munhyeong
    Kim, Sungho
    2021 21ST INTERNATIONAL CONFERENCE ON CONTROL, AUTOMATION AND SYSTEMS (ICCAS 2021), 2021, : 1120 - 1122
  • [35] AIE-YOLO: Auxiliary Information Enhanced YOLO for Small Object Detection
    Yan, Bingnan
    Li, Jiaxin
    Yang, Zhaozhao
    Zhang, Xinpeng
    Hao, Xiaolong
    SENSORS, 2022, 22 (21)
  • [36] A Temporal Boosted YOLO-Based Model for Birds Detection around Wind Farms
    Alqaysi, Hiba
    Fedorov, Igor
    Qureshi, Faisal Z.
    O'Nils, Mattias
    JOURNAL OF IMAGING, 2021, 7 (11)
  • [37] ViT-YOLO:Transformer-Based YOLO for Object Detection
    Zhang, Zixiao
    Lu, Xiaoqiang
    Cao, Guojin
    Yang, Yuting
    Jiao, Licheng
    Liu, Fang
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 2799 - 2808
  • [38] A YOLO-Based Target Detection Model for Offshore Unmanned Aerial Vehicle Data
    Wang, Zhenhua
    Zhang, Xinyue
    Li, Jing
    Luan, Kuifeng
    SUSTAINABILITY, 2021, 13 (23)
  • [39] GCP-YOLO: a lightweight underwater object detection model based on YOLOv7
    Gao, Yu
    Li, Zhanying
    Zhang, Kangye
    Kong, Lingyan
    Journal of Real-Time Image Processing, 2025, 22 (01)
  • [40] Object Detection Based on YOLO Network
    Liu, Chengji
    Tao, Yufan
    Liang, Jiawei
    Li, Kai
    Chen, Yihang
    PROCEEDINGS OF 2018 IEEE 4TH INFORMATION TECHNOLOGY AND MECHATRONICS ENGINEERING CONFERENCE (ITOEC 2018), 2018, : 799 - 803