YOLO-DA: An Efficient YOLO-Based Detector for Remote Sensing Object Detection

被引:7
|
作者
Lin, Jiehua [1 ]
Zhao, Yan [1 ]
Wang, Shigang [1 ]
Tang, Yu [1 ]
机构
[1] Jilin Univ, Coll Commun & Engn, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
Detectors; Head; Feature extraction; Optical imaging; Optical detectors; Task analysis; Object detection; Attention; convolutional neural networks (CNNs); object detection (OD); remote sensing (RS) images;
D O I
10.1109/LGRS.2023.3303896
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In the past few decades, many efficient object detectors have been proposed for natural scene image object detection (OD). However, due to the complex scenes and high interclass similarity of optical remote sensing (RS) images, applying these detectors to optical RS images directly is not very effective. Most of the recent detectors pursue higher accuracy while ignoring the balance between detection accuracy and speed, which hinders the practical application of these detectors, especially in embedded devices. To meet these challenges, a fast and accurate detector based on you only look once (YOLO) with decoupled attention head (YOLO-DA) is proposed, which effectively improves detection performance while only introducing minimal complexity. Specifically, an attention module at the end of the detector is designed for guiding a neural network to extract more efficient features from the complex background while also minimizing the amount of additional computation. Moreover, a lightweight decoupled detection head with enhanced classification and localization capability is developed to detect objects with high interclass similarity. In the experiments, the proposed method effectively solves the problem of high interclass similarity and improves the mean average precision (mAP) by 6.8% on the fine-grained optical RS dataset SIMD, compared with YOLOv5-L. In addition, the proposed method improves the mAP by 1.0%, 1.7%, and 0.6% on the other three publicly open optical RS datasets, respectively. Experimental results on detection accuracy and inference time demonstrate that our method achieves the best trade-off between detection performance and speed.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] YOLO-Based Efficient Vehicle Object Detection
    Liu, Ting-Na
    Zhu, Zhong-Jie
    Bai, Yong-Qiang
    Liao, Guang-Long
    Chen, Yin-Xue
    Journal of Computers (Taiwan), 2022, 33 (04): : 69 - 79
  • [2] YOLO-RMS: A Lightweight and Efficient Detector for Object Detection in Remote Sensing
    Liu, Fengwen
    Hu, Wenqiang
    Hu, Huan
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21
  • [3] YOLO-DSD: A YOLO-Based Detector Optimized for Better Balance between Accuracy, Deployability and Inference Time in Optical Remote Sensing Object Detection
    Chen, Hengxu
    Jin, Hong
    Lv, Shengping
    APPLIED SCIENCES-BASEL, 2022, 12 (15):
  • [4] Multiple Object Tracking using YOLO-based Detector
    Lin, Shinfeng D.
    Chang, Tingyu
    Chen, Wensheng
    JOURNAL OF IMAGING SCIENCE AND TECHNOLOGY, 2021, 65 (04)
  • [5] CSPPartial-YOLO: A Lightweight YOLO-Based Method for Typical Objects Detection in Remote Sensing Images
    Xie, Siyu
    Zhou, Mei
    Wang, Chunle
    Huang, Shisheng
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2024, 17 : 388 - 399
  • [6] Yolo-Based Improvements in Remote Sensing Image Applications
    Zhang, Yiming
    Li, Xiang
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2022, 2022
  • [7] COD-YOLO: An Efficient YOLO-Based Detector for Laser Chip Catastrophic Optical Damage Defect Detection
    Zhao, Jumin
    Hu, Wei
    Li, Dengao
    Guo, Shuai
    Luo, Biao
    Tang, Bao
    Lv, Yuxiang
    Jia, Huayu
    ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING, 2024,
  • [8] YOLO-Anti: YOLO-based counterattack model for unseen congested object detection
    Wang, Kun
    Liu, Maozhen
    PATTERN RECOGNITION, 2022, 131
  • [9] Remote sensing object detection based on YOLO and embedded systems
    Lin Yu
    Dong Zhenghong
    Xia Lurui
    Wang Junwei
    AOPC 2020: DISPLAY TECHNOLOGY; PHOTONIC MEMS, THZ MEMS, AND METAMATERIALS; AND AI IN OPTICS AND PHOTONICS, 2020, 11565
  • [10] CEH-YOLO: A composite enhanced YOLO-based model for underwater object detection
    Feng, Jiangfan
    Jin, Tao
    ECOLOGICAL INFORMATICS, 2024, 82