An optimized YOLO-based object detection model for crop harvesting system

被引:43
|
作者
Junos, Mohamad Haniff [1 ]
Mohd Khairuddin, Anis Salwa [1 ]
Thannirmalai, Subbiah [2 ]
Dahari, Mahidzal [1 ]
机构
[1] Univ Malaya, Fac Engn, Dept Elect Engn, Kuala Lumpur, Malaysia
[2] Sime Darby Technol Ctr Sdn Bhd, Adv Technol & Robot, Serdang, Selangor, Malaysia
关键词
FRUIT;
D O I
10.1049/ipr2.12181
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The adoption of automated crop harvesting system based on machine vision may improve productivity and optimize the operational cost. The scope of this study is to obtain visual information at the plantation which is crucial in developing an intelligent automated crop harvesting system. This paper aims to develop an automatic detection system with high accuracy performance, low computational cost and lightweight model. Considering the advantages of YOLOv3 tiny, an optimized YOLOv3 tiny network namely YOLO-P is proposed to detect and localize three objects at palm oil plantation which include fresh fruit bunch, grabber and palm tree under various environment conditions. The proposed YOLO-P model incorporated lightweight backbone based on densely connected neural network, multi-scale detection architecture and optimized anchor box size. The experimental results demonstrated that the proposed YOLO-P model achieved good mean average precision and F1 score of 98.68% and 0.97 respectively. Besides, the proposed model performed faster training process and generated lightweight model of 76 MB. The proposed model was also tested to identify fresh fruit bunch of various maturities with accuracy of 98.91%. The comprehensive experimental results show that the proposed YOLO-P model can effectively perform robust and accurate detection at the palm oil plantation.
引用
收藏
页码:2112 / 2125
页数:14
相关论文
共 50 条
  • [1] YOLO-Anti: YOLO-based counterattack model for unseen congested object detection
    Wang, Kun
    Liu, Maozhen
    PATTERN RECOGNITION, 2022, 131
  • [2] CEH-YOLO: A composite enhanced YOLO-based model for underwater object detection
    Feng, Jiangfan
    Jin, Tao
    ECOLOGICAL INFORMATICS, 2024, 82
  • [3] YOLO-Based Efficient Vehicle Object Detection
    Liu, Ting-Na
    Zhu, Zhong-Jie
    Bai, Yong-Qiang
    Liao, Guang-Long
    Chen, Yin-Xue
    Journal of Computers (Taiwan), 2022, 33 (04): : 69 - 79
  • [4] RescueNet: YOLO-based object detection model for detection and counting of flood survivors
    B. V. Balaji Prabhu
    R. Lakshmi
    R. Ankitha
    M. S. Prateeksha
    N. C. Priya
    Modeling Earth Systems and Environment, 2022, 8 : 4509 - 4516
  • [5] YOLO-Based Object Detection in Industry 4.0 Fischertechnik Model Environment
    Schneidereit, Slavomira
    Yarahmadi, Ashkan Mansouri
    Schneidereit, Toni
    Breuss, Michael
    Gebauer, Marc
    INTELLIGENT SYSTEMS AND APPLICATIONS, VOL 2, INTELLISYS 2023, 2024, 823 : 1 - 20
  • [6] RescueNet: YOLO-based object detection model for detection and counting of flood survivors
    Prabhu, B. V. Balaji
    Lakshmi, R.
    Ankitha, R.
    Prateeksha, M. S.
    Priya, N. C.
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2022, 8 (04) : 4509 - 4516
  • [7] SenseLite: A YOLO-Based Lightweight Model for Small Object Detection in Aerial Imagery
    Han, Tianxin
    Dong, Qing
    Sun, Lina
    SENSORS, 2023, 23 (19)
  • [8] NATCA YOLO-Based Small Object Detection for Aerial Images
    Zhu, Yicheng
    Ai, Zhenhua
    Yan, Jinqiang
    Li, Silong
    Yang, Guowei
    Yu, Teng
    INFORMATION, 2024, 15 (07)
  • [9] YOLO-based Object Detection Models: A Review and its Applications
    Vijayakumar, Ajantha
    Vairavasundaram, Subramaniyaswamy
    MULTIMEDIA TOOLS AND APPLICATIONS, 2024, 83 (35) : 83535 - 83574
  • [10] Optimized YOLO-Based Model for Real-Time Hand Keypoint Detection in Robotics
    Hu, Lingxiang
    Zhu, Xingfei
    Li, Dun
    Jiang, Zhinan
    Zhang, Fukai
    Zhang, Chengqiu
    2024 WRC SYMPOSIUM ON ADVANCED ROBOTICS AND AUTOMATION, WRC SARA, 2024, : 257 - 262