Rational points on a class of cubic hypersurfaces

被引:0
|
作者
Jiang, Yujiao [1 ]
Wen, Tingting [2 ]
Zhao, Wenjia [3 ]
机构
[1] Shandong Univ, Sch Math & Stat, Weihai 264209, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[3] Shandong Univ, Data Sci Inst, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Rational points; cubic hypersurfaces; Manin's conjecture; double Dirichlet series; MANINS CONJECTURE; BOUNDED HEIGHT; FORMS; DENSITY;
D O I
10.1515/forum-2023-0394
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let r >= 3 be an integer and Q any positive definite quadratic form in r variables. We establish asymptotic formulae with power-saving error terms for the number of rational points of bounded height on singular hypersurfaces S-Q defined by x(3) = Q(y(1), . . . ,y(r))z. This confirms Manin's conjecture for any S-Q. Our proof is based on analytic methods, and uses some estimates for character sums and moments of L-functions. In particular, one of the ingredients is Siegel's mass formula in the argument for the case r = 3.
引用
收藏
页数:26
相关论文
共 50 条