Quartic and Quintic Hypersurfaces with Dense Rational Points

被引:1
|
作者
Massarenti, Alex [1 ]
机构
[1] Univ Ferrara, Dept Math & Comp Sci, Via Machiavelli 30, I-44121 Ferrara, Italy
关键词
QUADRIC SURFACE BUNDLES; STABLE RATIONALITY; UNIRATIONALITY;
D O I
10.1017/fms.2023.55
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let X-4 subset of Pn+1 be a quartic hypersurface of dimension n >= 4 over an infinite field k. We show that if either X-4 contains a linear subspace Lambda of dimension h >= max{2, dim(Lambda boolean AND Sing(X-4)) + 2} or has double points along a linear subspace of dimension h >= 3, a smooth k-rational point and is otherwise general, then X-4 is unirational over k. This improves previous results by A. Predonzan and J. Harris, B. Mazur and R. Pandharipande for quartics. We also provide a density result for the k-rational points of quartic 3-folds with a double plane over a number field, and several unirationality results for quintic hypersurfaces over a C-r field.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Rational points on quartic hypersurfaces
    Browning, T. D.
    Heath-Brown, D. R.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 629 : 37 - 88
  • [2] Rational points on certain quintic hypersurfaces
    Ulas, Maciej
    ACTA ARITHMETICA, 2009, 138 (04) : 347 - 356
  • [4] The distribution of rational points for a class of quartic hypersurfaces
    Wataru Takeda
    Research in Number Theory, 2022, 8
  • [5] Counting rational points of quartic diagonal hypersurfaces over finite fields
    Hu, Shuangnian
    Li, Yanyan
    Feng, Rongquan
    AIMS MATHEMATICS, 2024, 9 (01): : 2167 - 2180
  • [6] The number of rational points of certain quartic diagonal hypersurfaces over finite fields
    Zhao, Junyong
    Hong, Shaofang
    Zhu, Chaoxi
    AIMS MATHEMATICS, 2020, 5 (03): : 2710 - 2731
  • [7] Bicombinants of the rational plane quartic and combinant curves of the rational plane quintic
    Rowe, JE
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1912, 13 : 387 - 404
  • [8] Counting rational points on hypersurfaces
    Browning, TD
    Heath-Brown, DR
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2005, 584 : 83 - 115
  • [9] Quartic surfaces, their bitangents and rational points
    Corvaja, Pietro
    Zucconi, Francesco
    EPIJOURNAL DE GEOMETRIE ALGEBRIQUE, 2023, 7 : 1 - 10
  • [10] RATIONAL POINTS ON DIAGONAL QUARTIC SURFACES
    Elsenhans, Andreas-Stephan
    MATHEMATICS OF COMPUTATION, 2012, 81 (277) : 481 - 492