Rational points on a class of cubic hypersurfaces

被引:0
|
作者
Jiang, Yujiao [1 ]
Wen, Tingting [2 ]
Zhao, Wenjia [3 ]
机构
[1] Shandong Univ, Sch Math & Stat, Weihai 264209, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[3] Shandong Univ, Data Sci Inst, Jinan 250100, Peoples R China
基金
中国国家自然科学基金;
关键词
Rational points; cubic hypersurfaces; Manin's conjecture; double Dirichlet series; MANINS CONJECTURE; BOUNDED HEIGHT; FORMS; DENSITY;
D O I
10.1515/forum-2023-0394
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let r >= 3 be an integer and Q any positive definite quadratic form in r variables. We establish asymptotic formulae with power-saving error terms for the number of rational points of bounded height on singular hypersurfaces S-Q defined by x(3) = Q(y(1), . . . ,y(r))z. This confirms Manin's conjecture for any S-Q. Our proof is based on analytic methods, and uses some estimates for character sums and moments of L-functions. In particular, one of the ingredients is Siegel's mass formula in the argument for the case r = 3.
引用
收藏
页数:26
相关论文
共 50 条
  • [11] Rational lines on cubic hypersurfaces
    Brandes, Julia
    Dietmann, Rainer
    MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 2021, 171 (01) : 99 - 112
  • [12] Rational lines on cubic hypersurfaces
    Zhao, Lilu
    ISRAEL JOURNAL OF MATHEMATICS, 2016, 215 (02) : 877 - 907
  • [13] ALGEBRAIC POINTS ON CUBIC HYPERSURFACES
    CORAY, D
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE A, 1975, 280 (04): : 181 - 182
  • [14] Closed Points on Cubic Hypersurfaces
    Ma, Qixiao
    MICHIGAN MATHEMATICAL JOURNAL, 2021, 70 (04) : 857 - 868
  • [15] Rational points on quartic hypersurfaces
    Browning, T. D.
    Heath-Brown, D. R.
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2009, 629 : 37 - 88
  • [16] Counting rational points on hypersurfaces
    Browning, TD
    Heath-Brown, DR
    JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2005, 584 : 83 - 115
  • [17] The number of rational points on a class of hypersurfaces in quadratic extensions of finite fields
    Chen, Qinlong
    Cao, Wei
    ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (07): : 4303 - 4312
  • [18] Remarks on the Number of Rational Points on a Class of Hypersurfaces over Finite Fields
    Huang, Hua
    Gao, Wei
    Cao, Wei
    ALGEBRA COLLOQUIUM, 2018, 25 (03) : 533 - 540
  • [19] The density of rational lines on cubic hypersurfaces
    Parsell, ST
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2000, 352 (11) : 5045 - 5062
  • [20] Rational Curves on Smooth Cubic Hypersurfaces
    Coskun, Izzet
    Starr, Jason
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2009, 2009 (24) : 4626 - 4641