A Secure Personalized Federated Learning Algorithm for Autonomous Driving

被引:2
|
作者
Fu, Yuchuan [1 ,2 ]
Tang, Xinlong [1 ,2 ]
Li, Changle [1 ,2 ]
Yu, Fei Richard [3 ]
Cheng, Nan [1 ,2 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Shaanxi, Peoples R China
[2] Xidian Univ, Res Inst Smart Transportat, Xian 710071, Shaanxi, Peoples R China
[3] Carleton Univ, Dept Syst & Comp Engn, Ottawa, ON K1S 5B6, Canada
基金
中国国家自然科学基金;
关键词
Internet of Vehicles; federated learning; energy cost fairness; malicious attacks;
D O I
10.1109/TITS.2024.3450726
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Federated learning (FL) is a promising technology for autonomous driving, enabling connected and autonomous vehicles (CAVs) to collaborate in decision-making and environmental perception while preserving privacy. However, traditional FL algorithms face challenges related to imbalanced data distribution, fluctuating channel conditions, and potential security risks associated with malicious attacks on local models. This paper proposes a fair and secure FL algorithm that not only addresses the challenges arising from imbalanced data distribution and fluctuating channel conditions, but defends against malicious attacks. Specifically, we first propose a personalized local training round allocation algorithm to balance energy costs and accelerate model convergence. Next, in order to further guarantee security, we embed an attack module based on Gini impurity. Extensive simulations demonstrate that the proposed algorithm achieves energy fairness, reduces global iteration time, and exhibits resistance against malicious attacks.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] A Dispersed Federated Learning Framework for 6G-Enabled Autonomous Driving Cars
    Khan, Latif U.
    Tun, Yan Kyaw
    Alsenwi, Madyan
    Imran, Muhammad
    Han, Zhu
    Hong, Choong Seon
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2024, 11 (06): : 5656 - 5667
  • [42] Binary Encoding-Based Federated Learning for Traffic Sign Recognition in Autonomous Driving
    Wen, Yian
    Zhou, Yun
    Gao, Kai
    MATHEMATICS, 2024, 12 (14)
  • [43] Explainable AI-based Federated Deep Reinforcement Learning for Trusted Autonomous Driving
    Rjoub, Gaith
    Bentahar, Jamal
    Wahab, Omar Abdel
    2022 INTERNATIONAL WIRELESS COMMUNICATIONS AND MOBILE COMPUTING, IWCMC, 2022, : 318 - 323
  • [44] Research on Autonomous Driving Perception based on Deep Learning Algorithm
    Zhou, Bolin
    Zheng, Jihu
    Chen, Chen
    Yin, Pei
    Zhai, Yang
    2019 INTERNATIONAL CONFERENCE ON IMAGE AND VIDEO PROCESSING, AND ARTIFICIAL INTELLIGENCE, 2019, 11321
  • [45] Personalized Federated Learning with Parameter Propagation
    Wu, Jun
    Bao, Wenxuan
    Ainsworth, Elizabeth
    He, Jingrui
    PROCEEDINGS OF THE 29TH ACM SIGKDD CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, KDD 2023, 2023, : 2594 - 2605
  • [46] Personalized Federated Contrastive Learning for Recommendation
    Wang, Shanfeng
    Zhou, Yuxi
    Fan, Xiaolong
    Li, Jianzhao
    Lei, Zexuan
    Gong, Maoguo
    IEEE TRANSACTIONS ON COMPUTATIONAL SOCIAL SYSTEMS, 2025,
  • [47] Personalized Federated Learning with Semisupervised Distillation
    Li, Xianxian
    Gong, Yanxia
    Liang, Yuan
    Wang, Li-e
    SECURITY AND COMMUNICATION NETWORKS, 2021, 2021
  • [48] Gradient Free Personalized Federated Learning
    Chen, Haoyu
    Zhang, Yuxin
    Zhao, Jin
    Wang, Xin
    Xu, Yuedong
    53RD INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, ICPP 2024, 2024, : 971 - 980
  • [49] Methods and Prospects of Personalized Federated Learning
    Sun, Yanhua
    Wang, Zihang
    Liu, Chang
    Yang, Ruizhe
    Li, Meng
    Wang, Zhuwei
    Computer Engineering and Applications, 2024, 60 (20) : 68 - 83
  • [50] Clustered Graph Federated Personalized Learning
    Gauthier, Francois
    Gogineni, Vinay Chakravarthi
    Werner, Stefan
    Huang, Yih-Fang
    Kuh, Anthony
    2022 56TH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2022, : 744 - 748