Explainable AI-based Federated Deep Reinforcement Learning for Trusted Autonomous Driving

被引:18
|
作者
Rjoub, Gaith [1 ]
Bentahar, Jamal [1 ]
Wahab, Omar Abdel [2 ]
机构
[1] Concordia Univ, Concordia Inst Informat Syst Engn CIISE, Montreal, PQ, Canada
[2] Univ Quebec Outaouais, Dept Comp Sci & Engn, Gatineau, PQ, Canada
关键词
Trajectory Planning; Autonomous Vehicles Selection; Deep Reinforcement Learning; Federated Learning; Edge Computing; Trust; Explainable Artificial Intelligence;
D O I
10.1109/IWCMC55113.2022.9824617
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recently, the concept of autonomous driving became prevalent in the domain of intelligent transportation due to the promises of increased safety, traffic efficiency, fuel economy and reduced travel time. Numerous studies have been conducted in this area to help newcomer vehicles plan their trajectory and velocity. However, most of these proposals only consider trajectory planning using conjunction with a limited data set (i.e., metropolis areas, highways, and residential areas) or assume fully connected and automated vehicle environment. Moreover, these approaches are not explainable and lack trust regarding the contributions of the participating vehicles. To tackle these problems, we design an Explainable Artificial Intelligence (XAI) Federated Deep Reinforcement Learning model to improve the effectiveness and trustworthiness of the trajectory decisions for newcomer Autonomous Vehicles (AVs). When a newcomer AV seeks help for trajectory planning, the edge server launches a federated learning process to train the trajectory and velocity prediction model in a distributed collaborative fashion among participating AVs. One essential challenge in this approach is AVs selection, i.e., how to select the appropriate AVs that should participate in the federated learning process. For this purpose, XAI is first used to compute the contribution of each feature contributed by each vehicle to the overall solution. This helps us compute the trust value for each AV in the model. Then, a trust-based deep reinforcement learning model is put forward to make the selection decisions. Experiments using a real-life dataset show that our solution achieves better performance than benchmark solutions (i.e., Deep Q-Network (DQN), and Random Selection (RS)).
引用
收藏
页码:318 / 323
页数:6
相关论文
共 50 条
  • [1] Deep Federated Learning for Autonomous Driving
    Anh Nguyen
    Tuong Do
    Minh Tran
    Nguyen, Binh X.
    Chien Duong
    Tu Phan
    Tjiputra, Erman
    Tran, Quang D.
    2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, : 1824 - 1830
  • [2] A Selective Federated Reinforcement Learning Strategy for Autonomous Driving
    Fu, Yuchuan
    Li, Changle
    Yu, F. Richard
    Luan, Tom H.
    Zhang, Yao
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2023, 24 (02) : 1655 - 1668
  • [3] Explainable AI-Based DDoS Attacks Classification Using Deep Transfer Learning
    Alzu'bi, Ahmad
    Albashayreh, Amjad
    Abuarqoub, Abdelrahman
    Alfawair, Mai A. M.
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 80 (03): : 3785 - 3802
  • [4] Reinforcement Learning and Deep Learning Based Lateral Control for Autonomous Driving
    Li, Dong
    Zhao, Dongbin
    Zhang, Qichao
    Chen, Yaran
    IEEE COMPUTATIONAL INTELLIGENCE MAGAZINE, 2019, 14 (02) : 83 - 98
  • [5] Deep Reinforcement Learning for Autonomous Driving: A Survey
    Kiran, B. Ravi
    Sobh, Ibrahim
    Talpaert, Victor
    Mannion, Patrick
    Al Sallab, Ahmad A.
    Yogamani, Senthil
    Perez, Patrick
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (06) : 4909 - 4926
  • [6] Explainable Deep Reinforcement Learning for UAV autonomous path planning
    He, Lei
    Aouf, Nabil
    Song, Bifeng
    AEROSPACE SCIENCE AND TECHNOLOGY, 2021, 118
  • [7] Path tracking control based on Deep reinforcement learning in Autonomous driving
    Jiang, Le
    Wang, Yafei
    Wang, Lin
    Wu, Jingkai
    2019 3RD CONFERENCE ON VEHICLE CONTROL AND INTELLIGENCE (CVCI), 2019, : 414 - 419
  • [8] Deep Reinforcement Learning for Autonomous Driving Based on Safety Experience Replay
    Huang, Xiaohan
    Cheng, Yuhu
    Yu, Qiang
    Wang, Xuesong
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2024, 16 (06) : 2070 - 2084
  • [9] AI-based Analysis of Sat/Aerial Images for Autonomous Driving
    Reinartz, Peter
    PROCEEDINGS OF THE 34TH INTERNATIONAL TECHNICAL MEETING OF THE SATELLITE DIVISION OF THE INSTITUTE OF NAVIGATION (ION GNSS+ 2021), 2021, : 4030 - 4044
  • [10] AI-Based Point Cloud Upsampling for Autonomous Driving Systems
    Salomon, Nicolas
    Delrieux, Claudio A.
    Borgnino, Leandro E.
    Morero, Damian A.
    2024 L LATIN AMERICAN COMPUTER CONFERENCE, CLEI 2024, 2024,