Explainable AI-based Federated Deep Reinforcement Learning for Trusted Autonomous Driving

被引:18
|
作者
Rjoub, Gaith [1 ]
Bentahar, Jamal [1 ]
Wahab, Omar Abdel [2 ]
机构
[1] Concordia Univ, Concordia Inst Informat Syst Engn CIISE, Montreal, PQ, Canada
[2] Univ Quebec Outaouais, Dept Comp Sci & Engn, Gatineau, PQ, Canada
关键词
Trajectory Planning; Autonomous Vehicles Selection; Deep Reinforcement Learning; Federated Learning; Edge Computing; Trust; Explainable Artificial Intelligence;
D O I
10.1109/IWCMC55113.2022.9824617
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Recently, the concept of autonomous driving became prevalent in the domain of intelligent transportation due to the promises of increased safety, traffic efficiency, fuel economy and reduced travel time. Numerous studies have been conducted in this area to help newcomer vehicles plan their trajectory and velocity. However, most of these proposals only consider trajectory planning using conjunction with a limited data set (i.e., metropolis areas, highways, and residential areas) or assume fully connected and automated vehicle environment. Moreover, these approaches are not explainable and lack trust regarding the contributions of the participating vehicles. To tackle these problems, we design an Explainable Artificial Intelligence (XAI) Federated Deep Reinforcement Learning model to improve the effectiveness and trustworthiness of the trajectory decisions for newcomer Autonomous Vehicles (AVs). When a newcomer AV seeks help for trajectory planning, the edge server launches a federated learning process to train the trajectory and velocity prediction model in a distributed collaborative fashion among participating AVs. One essential challenge in this approach is AVs selection, i.e., how to select the appropriate AVs that should participate in the federated learning process. For this purpose, XAI is first used to compute the contribution of each feature contributed by each vehicle to the overall solution. This helps us compute the trust value for each AV in the model. Then, a trust-based deep reinforcement learning model is put forward to make the selection decisions. Experiments using a real-life dataset show that our solution achieves better performance than benchmark solutions (i.e., Deep Q-Network (DQN), and Random Selection (RS)).
引用
收藏
页码:318 / 323
页数:6
相关论文
共 50 条
  • [21] Assisted driving system based on federated reinforcement learning
    Tang, Xiaolan
    Liang, Yuting
    Wang, Guan
    Chen, Wenlong
    DISPLAYS, 2023, 80
  • [22] End-to-End Autonomous Driving Decision Based on Deep Reinforcement Learning
    Huang Z.-Q.
    Qu Z.-W.
    Zhang J.
    Zhang Y.-X.
    Tian R.
    Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2020, 48 (09): : 1711 - 1719
  • [23] Improving the Performance of Autonomous Driving through Deep Reinforcement Learning
    Tammewar, Akshaj
    Chaudhari, Nikita
    Saini, Bunny
    Venkatesh, Divya
    Dharahas, Ganpathiraju
    Vora, Deepali
    Patil, Shruti
    Kotecha, Ketan
    Alfarhood, Sultan
    SUSTAINABILITY, 2023, 15 (18)
  • [24] Deep Reinforcement Learning for Autonomous Driving with an Auxiliary Actor Discriminator
    Gao, Qiming
    Chang, Fangle
    Yang, Jiahong
    Tao, Yu
    Ma, Longhua
    Su, Hongye
    SENSORS, 2024, 24 (02)
  • [25] Autonomous driving in the uncertain traffic——a deep reinforcement learning approach
    Yang Shun
    Wu Jian
    Zhang Sumin
    Han Wei
    The Journal of China Universities of Posts and Telecommunications, 2018, 25 (06) : 21 - 30
  • [26] Deep Reinforcement Learning with Enhanced Safety for Autonomous Highway Driving
    Baheri, Ali
    Nageshrao, Subramanya
    Tseng, H. Eric
    Kolmanovsky, Ilya
    Girard, Anouck
    Filev, Dimitar
    2020 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2020, : 1550 - 1555
  • [27] Autonomous Vehicle Driving Path Control with Deep Reinforcement Learning
    Tiong, Teckchai
    Saad, Ismail
    Teo, Kenneth Tze Kin
    bin Lago, Herwansyah
    2023 IEEE 13TH ANNUAL COMPUTING AND COMMUNICATION WORKSHOP AND CONFERENCE, CCWC, 2023, : 84 - 92
  • [28] Deep Reinforcement Learning for Autonomous Driving by Transferring Visual Features
    Zhou, Hongli
    Chen, Xiaolei
    Zhang, Guanwen
    Zhou, Wei
    2020 25TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2021, : 4436 - 4441
  • [29] Deep Hierarchical Reinforcement Learning for Autonomous Driving with Distinct Behaviors
    Chen, Jianyu
    Wang, Zining
    Tomizuka, Masayoshi
    2018 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2018, : 1239 - 1244
  • [30] OD-XAI: Explainable AI-Based Semantic Object Detection for Autonomous Vehicles
    Mankodiya, Harsh
    Jadav, Dhairya
    Gupta, Rajesh
    Tanwar, Sudeep
    Hong, Wei-Chiang
    Sharma, Ravi
    APPLIED SCIENCES-BASEL, 2022, 12 (11):