A Secure Personalized Federated Learning Algorithm for Autonomous Driving

被引:2
|
作者
Fu, Yuchuan [1 ,2 ]
Tang, Xinlong [1 ,2 ]
Li, Changle [1 ,2 ]
Yu, Fei Richard [3 ]
Cheng, Nan [1 ,2 ]
机构
[1] Xidian Univ, State Key Lab Integrated Serv Networks, Xian 710071, Shaanxi, Peoples R China
[2] Xidian Univ, Res Inst Smart Transportat, Xian 710071, Shaanxi, Peoples R China
[3] Carleton Univ, Dept Syst & Comp Engn, Ottawa, ON K1S 5B6, Canada
基金
中国国家自然科学基金;
关键词
Internet of Vehicles; federated learning; energy cost fairness; malicious attacks;
D O I
10.1109/TITS.2024.3450726
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Federated learning (FL) is a promising technology for autonomous driving, enabling connected and autonomous vehicles (CAVs) to collaborate in decision-making and environmental perception while preserving privacy. However, traditional FL algorithms face challenges related to imbalanced data distribution, fluctuating channel conditions, and potential security risks associated with malicious attacks on local models. This paper proposes a fair and secure FL algorithm that not only addresses the challenges arising from imbalanced data distribution and fluctuating channel conditions, but defends against malicious attacks. Specifically, we first propose a personalized local training round allocation algorithm to balance energy costs and accelerate model convergence. Next, in order to further guarantee security, we embed an attack module based on Gini impurity. Extensive simulations demonstrate that the proposed algorithm achieves energy fairness, reduces global iteration time, and exhibits resistance against malicious attacks.
引用
收藏
页数:12
相关论文
共 50 条
  • [11] Imitation Learning Decision with Driving Style Tuning for Personalized Autonomous Driving
    Hui, Rui
    Wang, Yuze
    Zeng, Ximu
    Liu, Shuncheng
    Yu, Quanlin
    Wu, Peicong
    Zhang, Zhengzhuo
    Su, Han
    Zheng, Kai
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS, PT VII, DASFAA 2024, 2024, 14856 : 220 - 231
  • [12] End-to-End Federated Learning for Autonomous Driving Vehicles
    Zhang, Hongyi
    Bosch, Jan
    Olsson, Helena Holmstrom
    2021 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2021,
  • [13] FedDrive: Generalizing Federated Learning to Semantic Segmentation in Autonomous Driving
    Fantauzzo, Lidia
    Fani, Eros
    Caldarola, Debora
    Tavera, Antonio
    Cermelli, Fabio
    Ciccone, Marco
    Caputo, Barbara
    2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 11504 - 11511
  • [14] Secure and Private Vertical Federated Learning for Predicting Personalized CVA Outcomes
    Allaart, Corinne G.
    Makkes, Marc X.
    Dijksman, Lea
    van der Nat, Paul
    Biesma, Douwe
    Bal, Henri
    van Halteren, Aart
    ARTIFICIAL INTELLIGENCE IN MEDICINE, PT I, AIME 2024, 2024, 14844 : 172 - 181
  • [15] Federated Learning Platform for Secure Object Recognition in Connected and Autonomous Vehicles
    Baucas, Marc Jayson
    Spachos, Petros
    Gregori, Stefano
    ICC 2024 - IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, 2024, : 2306 - 2311
  • [16] Personalized Car Following for Autonomous Driving with Inverse Reinforcement Learning
    Zhao, Zhouqiao
    Wang, Ziran
    Han, Kyungtae
    Gupta, Rohit
    Tiwari, Prashant
    Wu, Guoyuan
    Barth, Matthew J.
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022, : 2891 - 2897
  • [17] A Personalized Federated Learning Algorithm Based on Dynamic Weight Allocation
    Liu, Yazhi
    Li, Siwei
    Li, Wei
    Qian, Hui
    Xia, Haonan
    ELECTRONICS, 2025, 14 (03):
  • [18] Ensuring federated learning reliability for infrastructure-enhanced autonomous driving
    Acar, Benjamin
    Sterling, Marius
    JOURNAL OF INTELLIGENT AND CONNECTED VEHICLES, 2023, 6 (03) : 125 - 135
  • [19] An Incentive Mechanism for Long-Term Federated Learning in Autonomous Driving
    Fu, Yuchuan
    Li, Zhenyu
    Liu, Sha
    Li, Changle
    Yu, F. Richard
    Cheng, Nan
    IEEE INTERNET OF THINGS JOURNAL, 2024, 11 (09): : 15642 - 15655
  • [20] Secure and Accurate Personalized Federated Learning With Similarity-Based Model Aggregation
    Tan, Zhouyong
    Le, Junqing
    Yang, Fan
    Huang, Min
    Xiang, Tao
    Liao, Xiaofeng
    IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2025, 10 (01): : 132 - 145