Oscillatory integrals for Mittag-Leffler functions with two variables

被引:0
|
作者
Ikromov, Isroil A. [1 ,2 ]
Ruzhansky, Michael [3 ,4 ]
Safarov, Akbar R. [5 ]
机构
[1] Acad Sci Uzbek, Inst Math, Tashkent, Uzbekistan
[2] State Univ, Dept Math, 15 Univ Blvd, Samarkand 140104, Uzbekistan
[3] Univ Ghent, Dept Math Anal Log & Discrete Math, Krijgslaan 281, Ghent, Belgium
[4] Queen Mary Univ London, Sch Math Sci, London, England
[5] Uzbek Finnish Pedag Inst, Spitamenshox 166, Samarkand, Uzbekistan
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.5802/crmath.597
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the problem of estimation of oscillatory integrals with Mittag-Leffler functions in two variables. The generalisation is that we replace the exponential function with the MittagLeffler-type function, to study oscillatory type integrals.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Zeros distribution of Mittag-Leffler functions
    Popov, AY
    Sedletskii, AM
    DOKLADY MATHEMATICS, 2003, 67 (03) : 336 - 339
  • [22] Rational Approximations for the Oscillatory Two-Parameter Mittag-Leffler Function
    Honain, Aljowhara H.
    Furati, Khaled M.
    Sarumi, Ibrahim O.
    Khaliq, Abdul Q. M.
    FRACTAL AND FRACTIONAL, 2024, 8 (06)
  • [23] SERIES EXPANSIONS IN MITTAG-LEFFLER FUNCTIONS
    LIK, CZ
    DOKLADY AKADEMII NAUK SSSR, 1971, 200 (01): : 49 - &
  • [24] Pade approximants of the Mittag-Leffler functions
    Starovoitov, A. P.
    Starovoitova, N. A.
    SBORNIK MATHEMATICS, 2007, 198 (7-8) : 1011 - 1023
  • [25] CONVERGENCE OF SERIES IN MITTAG-LEFFLER FUNCTIONS
    Paneva-Konovska, Jordanka
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2010, 63 (06): : 815 - 822
  • [26] Numerical evaluation of Mittag-Leffler functions
    McLean, William
    CALCOLO, 2021, 58 (01)
  • [27] Mittag-Leffler functions and complete monotonicity
    Simon, Thomas
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2015, 26 (01) : 36 - 50
  • [28] Mittag-Leffler Functions in Discrete Time
    Atici, Ferhan M.
    Chang, Samuel
    Jonnalagadda, Jagan Mohan
    FRACTAL AND FRACTIONAL, 2023, 7 (03)
  • [29] ON MITTAG-LEFFLER FUNCTIONS AND RELATED DISTRIBUTIONS
    PILLAI, RN
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1990, 42 (01) : 157 - 161
  • [30] Distribution of roots of Mittag-Leffler functions
    Popov A.Y.
    Sedletskii A.M.
    Journal of Mathematical Sciences, 2013, 190 (2) : 209 - 409