Mittag-Leffler functions and complete monotonicity

被引:17
|
作者
Simon, Thomas [1 ,2 ]
机构
[1] Univ Lille 1, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
[2] Univ Paris 11, Lab Phys Theor & Modeles Stat, F-91405 Orsay, France
关键词
Abelian transform; Stieltjes transform; Mittag-Leffler function; Mellin transform; incomplete Gamma function; complete monotonicity; 60G52; 26A33; 26A48; 33E12;
D O I
10.1080/10652469.2014.965704
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider two operations on the Mittag-Leffler function which cancel the exponential term in the expansion at infinity, and generate a completely monotonic function. The first one is the action of a certain differential-difference operator, and leads to a characterization via some necktie domain. The second one is the subtraction of the exponential term itself multiplied by an incomplete Gamma function. These results extend previous works by various authors.
引用
收藏
页码:36 / 50
页数:15
相关论文
共 50 条
  • [1] ON COMPLETE MONOTONICITY OF THREE PARAMETER MITTAG-LEFFLER FUNCTION
    Gorska, Katarzyna
    Horzela, Andrzej
    Lattanzi, Ambra
    Pogany, Tibor K.
    [J]. APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2021, 15 (01) : 118 - 128
  • [2] SOME RESULTS ON THE COMPLETE MONOTONICITY OF MITTAG-LEFFLER FUNCTIONS OF LE ROY TYPE
    Gorska, Katarzyna
    Horzela, Andrzej
    Garrappa, Roberto
    [J]. FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2019, 22 (05) : 1284 - 1306
  • [3] Some results on the Complete Monotonicity of Mittag-Leffler Functions of Le Roy Type
    Katarzyna Górska
    Andrzej Horzela
    Roberto Garrappa
    [J]. Fractional Calculus and Applied Analysis, 2019, 22 : 1284 - 1306
  • [4] A monotonicity property of the Mittag-Leffler function
    Alzer, Horst
    Kwong, Man Kam
    [J]. ACTA SCIENTIARUM MATHEMATICARUM, 2019, 85 (1-2): : 181 - 187
  • [5] Mittag-Leffler Functions and Their Applications
    Haubold, H. J.
    Mathai, A. M.
    Saxena, R. K.
    [J]. JOURNAL OF APPLIED MATHEMATICS, 2011,
  • [6] Mittag-Leffler functions in superstatistics
    dos Santos, Maike A. F.
    [J]. CHAOS SOLITONS & FRACTALS, 2020, 131
  • [7] Mittag-Leffler vector random fields with Mittag-Leffler direct and cross covariance functions
    Ma, Chunsheng
    [J]. ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2013, 65 (05) : 941 - 958
  • [8] Mittag-Leffler vector random fields with Mittag-Leffler direct and cross covariance functions
    Chunsheng Ma
    [J]. Annals of the Institute of Statistical Mathematics, 2013, 65 : 941 - 958
  • [9] Zeros distribution of Mittag-Leffler functions
    Popov, AY
    Sedletskii, AM
    [J]. DOKLADY MATHEMATICS, 2003, 67 (03) : 336 - 339
  • [10] Mittag-Leffler functions and transmission lines
    Clarke, T
    Achar, BNN
    Hanneken, JW
    [J]. JOURNAL OF MOLECULAR LIQUIDS, 2004, 114 (1-3) : 159 - 163