Oscillatory integrals for Mittag-Leffler functions with two variables

被引:0
|
作者
Ikromov, Isroil A. [1 ,2 ]
Ruzhansky, Michael [3 ,4 ]
Safarov, Akbar R. [5 ]
机构
[1] Acad Sci Uzbek, Inst Math, Tashkent, Uzbekistan
[2] State Univ, Dept Math, 15 Univ Blvd, Samarkand 140104, Uzbekistan
[3] Univ Ghent, Dept Math Anal Log & Discrete Math, Krijgslaan 281, Ghent, Belgium
[4] Queen Mary Univ London, Sch Math Sci, London, England
[5] Uzbek Finnish Pedag Inst, Spitamenshox 166, Samarkand, Uzbekistan
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.5802/crmath.597
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the problem of estimation of oscillatory integrals with Mittag-Leffler functions in two variables. The generalisation is that we replace the exponential function with the MittagLeffler-type function, to study oscillatory type integrals.
引用
收藏
页数:11
相关论文
共 50 条
  • [42] On zeros of a certain family of Mittag-Leffler functions
    Popov A.Yu.
    Journal of Mathematical Sciences, 2007, 144 (4) : 4228 - 4231
  • [43] MITTAG-LEFFLER FUNCTIONS AND THEIR APPLICATIONS IN NETWORK SCIENCE
    Arrigo, Francesca
    Durastante, Fabio
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2021, 42 (04) : 1581 - 1601
  • [44] ON A MULTIVARIABLE CLASS OF MITTAG-LEFFLER TYPE FUNCTIONS
    Parmar, Rakesh Kumar
    Luo, Minjie
    Raina, Ravinder Krishna
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2016, 6 (04): : 981 - 999
  • [45] Hermite—Padé Approximants of the Mittag-Leffler Functions
    A. P. Starovoitov
    Proceedings of the Steklov Institute of Mathematics, 2018, 301 : 228 - 244
  • [46] Geometric Properties of Normalized Mittag-Leffler Functions
    Noreen, Saddaf
    Raza, Mohsan
    Liu, Jin-Lin
    Arif, Muhammad
    SYMMETRY-BASEL, 2019, 11 (01):
  • [47] Convergence of Series in Mittag-Leffler Type Functions
    Paneva-Konovska, J.
    APPLICATION OF MATHEMATICS IN TECHNICAL AND NATURAL SCIENCES, 2010, 1301 : 636 - 643
  • [48] Overconvergence of series in generalized mittag-leffler functions
    Paneva-Konovska, Jordanka
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2017, 20 (02) : 506 - 520
  • [49] Analog filters based on the Mittag-Leffler functions
    Allagui, Anis
    Elwakil, Ahmed S.
    Nako, Julia
    Psychalinos, Costas
    SIGNAL PROCESSING, 2025, 233
  • [50] On the fractional calculus of multivariate Mittag-Leffler functions
    Ozarslan, Mehmet Ali
    Fernandez, Arran
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (02) : 247 - 273