Oscillatory integrals for Mittag-Leffler functions with two variables

被引:0
|
作者
Ikromov, Isroil A. [1 ,2 ]
Ruzhansky, Michael [3 ,4 ]
Safarov, Akbar R. [5 ]
机构
[1] Acad Sci Uzbek, Inst Math, Tashkent, Uzbekistan
[2] State Univ, Dept Math, 15 Univ Blvd, Samarkand 140104, Uzbekistan
[3] Univ Ghent, Dept Math Anal Log & Discrete Math, Krijgslaan 281, Ghent, Belgium
[4] Queen Mary Univ London, Sch Math Sci, London, England
[5] Uzbek Finnish Pedag Inst, Spitamenshox 166, Samarkand, Uzbekistan
基金
英国工程与自然科学研究理事会;
关键词
D O I
10.5802/crmath.597
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we consider the problem of estimation of oscillatory integrals with Mittag-Leffler functions in two variables. The generalisation is that we replace the exponential function with the MittagLeffler-type function, to study oscillatory type integrals.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Oscillatory Integrals for Mittag-Leffler Functions
    Safarov, Akbar R.
    Ibragimov, Ulugbek A.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2024, 17 (04): : 488 - 496
  • [2] Estimates for Integrals with Mittag-Leffler Functions
    Ikromov, Isroil A.
    Safarov, Akbar R.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (08) : 3884 - 3896
  • [3] Asymptotic analysis of oscillatory integrals with the Mittag-Leffler function as an oscillatory kernel
    Abdelhakim, Ahmed A. A.
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (03) : 1186 - 1205
  • [4] Asymptotic analysis of oscillatory integrals with the Mittag-Leffler function as an oscillatory kernel
    Ahmed A. Abdelhakim
    Fractional Calculus and Applied Analysis, 2023, 26 : 1186 - 1205
  • [5] Mittag-Leffler type functions of three variables
    Hasanov, Anvar
    Yuldashova, Hilola
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025, 48 (02) : 1659 - 1675
  • [6] Fractional integrals and derivatives of Mittag-Leffler type functions
    Kilbas, AA
    Saigo, M
    DOKLADY AKADEMII NAUK BELARUSI, 1995, 39 (04): : 22 - 26
  • [7] Certain Integrals Involving Generalized Mittag-Leffler Functions
    P. Agarwal
    M. Chand
    S. Jain
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2015, 85 : 359 - 371
  • [8] Some Unified Integrals for Generalized Mittag-Leffler Functions
    Singh, Prakash
    Jain, Shilpi
    Cattani, Carlo
    AXIOMS, 2021, 10 (04)
  • [9] Certain Integrals Involving Generalized Mittag-Leffler Functions
    Agarwal, P.
    Chand, M.
    Jain, S.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2015, 85 (03) : 359 - 371
  • [10] SOME INTEGRALS ASSOCIATED WITH MULTIINDEX MITTAG-LEFFLER FUNCTIONS
    Khan, N. U.
    Usman, T.
    Ghayasuddin, M.
    JOURNAL OF APPLIED MATHEMATICS & INFORMATICS, 2016, 34 (3-4): : 249 - 255