SOME INTEGRALS ASSOCIATED WITH MULTIINDEX MITTAG-LEFFLER FUNCTIONS

被引:4
|
作者
Khan, N. U. [1 ]
Usman, T. [1 ]
Ghayasuddin, M. [1 ]
机构
[1] Aligarh Muslim Univ, Dept Appl Math, Aligarh 202002, Uttar Pradesh, India
来源
关键词
Multiple (multiindex) Mittag-Leffler Function; Wright Hypergeometric Function and Integrals;
D O I
10.14317/jami.2016.249
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The object of the present paper is to establish two interesting unified integral formulas involving Multiple (multiindex) Mittag-Leffler functions, which is expressed in terms of Wright hypergeometric function. Some deduction from these results are also considered.
引用
收藏
页码:249 / 255
页数:7
相关论文
共 50 条
  • [1] A Note on Fractional Integral Operator Associated with Multiindex Mittag-Leffler Functions
    Choi, Junesang
    Agarwal, Praveen
    FILOMAT, 2016, 30 (07) : 1931 - 1939
  • [2] Some Unified Integrals for Generalized Mittag-Leffler Functions
    Singh, Prakash
    Jain, Shilpi
    Cattani, Carlo
    AXIOMS, 2021, 10 (04)
  • [3] Estimates for Integrals with Mittag-Leffler Functions
    Ikromov, Isroil A.
    Safarov, Akbar R.
    LOBACHEVSKII JOURNAL OF MATHEMATICS, 2024, 45 (08) : 3884 - 3896
  • [4] Oscillatory Integrals for Mittag-Leffler Functions
    Safarov, Akbar R.
    Ibragimov, Ulugbek A.
    JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2024, 17 (04): : 488 - 496
  • [5] Multiple (multiindex) Mittag-Leffler functions and relations to generalized fractional calculus
    Kiryakova, VS
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 118 (1-2) : 241 - 259
  • [6] Some properties of the Mittag-Leffler functions
    Sen Gupta, Indranil
    Debnath, Lokenath
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2007, 18 (05) : 329 - 336
  • [7] Fractional integrals and derivatives of Mittag-Leffler type functions
    Kilbas, AA
    Saigo, M
    DOKLADY AKADEMII NAUK BELARUSI, 1995, 39 (04): : 22 - 26
  • [8] Certain Integrals Involving Generalized Mittag-Leffler Functions
    P. Agarwal
    M. Chand
    S. Jain
    Proceedings of the National Academy of Sciences, India Section A: Physical Sciences, 2015, 85 : 359 - 371
  • [9] Certain Integrals Involving Generalized Mittag-Leffler Functions
    Agarwal, P.
    Chand, M.
    Jain, S.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES INDIA SECTION A-PHYSICAL SCIENCES, 2015, 85 (03) : 359 - 371
  • [10] Oscillatory integrals for Mittag-Leffler functions with two variables
    Ikromov, Isroil A.
    Ruzhansky, Michael
    Safarov, Akbar R.
    COMPTES RENDUS MATHEMATIQUE, 2024, 362