SOME INTEGRALS ASSOCIATED WITH MULTIINDEX MITTAG-LEFFLER FUNCTIONS

被引:4
|
作者
Khan, N. U. [1 ]
Usman, T. [1 ]
Ghayasuddin, M. [1 ]
机构
[1] Aligarh Muslim Univ, Dept Appl Math, Aligarh 202002, Uttar Pradesh, India
来源
关键词
Multiple (multiindex) Mittag-Leffler Function; Wright Hypergeometric Function and Integrals;
D O I
10.14317/jami.2016.249
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The object of the present paper is to establish two interesting unified integral formulas involving Multiple (multiindex) Mittag-Leffler functions, which is expressed in terms of Wright hypergeometric function. Some deduction from these results are also considered.
引用
收藏
页码:249 / 255
页数:7
相关论文
共 50 条
  • [21] Unified Integrals of Generalized Mittag-Leffler Functions and Their Graphical Numerical Investigation
    Khan, Nabiullah
    Khan, Mohammad Iqbal
    Usman, Talha
    Nonlaopon, Kamsing
    Al-Omari, Shrideh
    SYMMETRY-BASEL, 2022, 14 (05):
  • [22] Mittag-Leffler vector random fields with Mittag-Leffler direct and cross covariance functions
    Ma, Chunsheng
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 2013, 65 (05) : 941 - 958
  • [23] Mittag-Leffler vector random fields with Mittag-Leffler direct and cross covariance functions
    Chunsheng Ma
    Annals of the Institute of Statistical Mathematics, 2013, 65 : 941 - 958
  • [24] Some finite integrals involving Mittag-Leffler confluent hypergeometric function
    Pal, Ankit
    ANALYSIS-INTERNATIONAL MATHEMATICAL JOURNAL OF ANALYSIS AND ITS APPLICATIONS, 2024, 44 (01): : 17 - 24
  • [25] Mittag-Leffler functions and transmission lines
    Clarke, T
    Achar, BNN
    Hanneken, JW
    JOURNAL OF MOLECULAR LIQUIDS, 2004, 114 (1-3) : 159 - 163
  • [26] Zeros distribution of Mittag-Leffler functions
    Popov, AY
    Sedletskii, AM
    DOKLADY MATHEMATICS, 2003, 67 (03) : 336 - 339
  • [27] SERIES EXPANSIONS IN MITTAG-LEFFLER FUNCTIONS
    LIK, CZ
    DOKLADY AKADEMII NAUK SSSR, 1971, 200 (01): : 49 - &
  • [28] Pade approximants of the Mittag-Leffler functions
    Starovoitov, A. P.
    Starovoitova, N. A.
    SBORNIK MATHEMATICS, 2007, 198 (7-8) : 1011 - 1023
  • [29] CONVERGENCE OF SERIES IN MITTAG-LEFFLER FUNCTIONS
    Paneva-Konovska, Jordanka
    COMPTES RENDUS DE L ACADEMIE BULGARE DES SCIENCES, 2010, 63 (06): : 815 - 822
  • [30] Numerical evaluation of Mittag-Leffler functions
    McLean, William
    CALCOLO, 2021, 58 (01)