Brain Tumor Segmentation of MRI images with U-Net and DeepLabV3+

被引:0
|
作者
Akagic, Amila [1 ]
Kapo, Medina [1 ]
Kandic, Elma [1 ]
Becirovic, Merjem [1 ]
Kadric, Nerma [1 ]
机构
[1] Univ Sarajevo, Fac Elect Engn, Sarajevo 71000, Bosnia & Herceg
关键词
Biomedical Imaging; Medical Image Segmentation; MRI; Brain tumor; Computer Vision; Semantic Segmentation;
D O I
10.1109/ICMI60790.2024.10585749
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In recent years, notable advancements have been made in medical imaging technology, with Magnetic Resonance Imaging (MRI) assuming a pivotal role in the diagnosis of brain tumors. Despite these advancements, medical image segmentation continues to pose a formidable challenge, as highlighted by various factors documented in existing literature. This study delves into the cutting-edge developments in Deep Learning for semantic segmentation, specifically concentrating on the precise identification of brain tumor pixels in 2D images. Employing U-Net and DeepLabV3+ architectures, the research provides experimental evidence that underscores the unparalleled performance of DeepLabV3+ with the Binary Cross Entropy loss function, offering valuable insights for enhancing the accuracy of brain tumor segmentation in medical imaging.
引用
下载
收藏
页数:6
相关论文
共 50 条
  • [11] MAU-Net: Mixed attention U-Net for MRI brain tumor segmentation
    Zhang, Yuqing
    Han, Yutong
    Zhang, Jianxin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (12) : 20510 - 20527
  • [12] Brain Tumor Segmentation Using Dual-Path Attention U-Net in 3D MRI Images
    Jun, Wen
    Xu, Haoxiang
    Wang, Zhang
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT I, 2021, 12658 : 183 - 193
  • [13] Tuning U-Net for Brain Tumor Segmentation
    Futrega, Michal
    Marcinkiewicz, Michal
    Ribalta, Pablo
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2022, 2023, 13769 : 162 - 173
  • [14] Optimized U-Net for Brain Tumor Segmentation
    Futrega, Michal
    Milesi, Alexandre
    Marcinkiewicz, Michal
    Ribalta, Pablo
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II, 2022, 12963 : 15 - 29
  • [15] Brain Tumor Segmentation from 3D MRI Scans Using U-Net
    Montaha S.
    Azam S.
    Rakibul Haque Rafid A.K.M.
    Hasan M.Z.
    Karim A.
    SN Computer Science, 4 (4)
  • [16] Edge U-Net: Brain tumor segmentation using MRI based on deep U-Net model with boundary information
    Allah, Ahmed M. Gab
    Sarhan, Amany M.
    Elshennawy, Nada M.
    EXPERT SYSTEMS WITH APPLICATIONS, 2023, 213
  • [17] Brain Tumor Segmentation in Multimodal MRI Using U-Net Layered Structure
    Iqbal, Muhammad Javaid
    Iqbal, Muhammad Waseem
    Anwar, Muhammad
    Khan, Muhammad Murad
    Nazimi, Abd Jabar
    Ahmad, Mohammad Nazir
    CMC-COMPUTERS MATERIALS & CONTINUA, 2023, 74 (03): : 5267 - 5281
  • [18] U-Net architecture variants for brain tumor segmentation of histogram corrected images
    Lefkovits, Szidonia
    Lefkovits, Laszlo
    ACTA UNIVERSITATIS SAPIENTIAE INFORMATICA, 2022, 14 (01) : 49 - 74
  • [19] Optimized U-Net Segmentation and Hybrid Res-Net for Brain Tumor MRI Classification
    Rajaragavi, R.
    Rajan, S. Palanivel
    INTELLIGENT AUTOMATION AND SOFT COMPUTING, 2022, 32 (01): : 1 - 14
  • [20] SDResU-Net: Separable and Dilated Residual U-Net for MRI Brain Tumor Segmentation
    Zhang, Jianxin
    Lv, Xiaogang
    Sun, Qiule
    Zhang, Qiang
    Wei, Xiaopeng
    Liu, Bin
    CURRENT MEDICAL IMAGING, 2020, 16 (06) : 720 - 728