Optimized U-Net Segmentation and Hybrid Res-Net for Brain Tumor MRI Classification

被引:8
|
作者
Rajaragavi, R. [1 ]
Rajan, S. Palanivel [2 ]
机构
[1] Anna Univ, Dept Informat & Commun Engn, Chennai 600025, Tamil Nadu, India
[2] M Kumarasamy Coll Engn, Dept Elect & Commun Engn, Thalavapalayam 639113, Karur, India
来源
关键词
MRI; convlstm; hausdorff distance; squirrel search; CONVOLUTIONAL NEURAL-NETWORKS;
D O I
10.32604/iasc.2022.021206
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A brain tumor is a portion of uneven cells, need to be detected earlier for treatment. Magnetic Resonance Imaging (MRI) is a routinely utilized procedure to take brain tumor images. Manual segmentation of tumor is a crucial task and laborious. There is a need for an automated system for segmentation and classification for tumor surgery and medical treatments. This work suggests an efficient brain tumor segmentation and classification based on deep learning techniques. Initially, Squirrel search optimized bidirectional ConvLSTM U-net with attention gate proposed for brain tumour segmentation. Then, the Hybrid Deep ResNet and Inception Model used for classification. Squirrel search optimizer mimics the searching behavior of southern flying squirrels and their well-organized way of movement. Here, the squirrel optimizer is utilized to tune the hyperparameters of the U-net model. In addition, bidirectional attention modules of position and channel modules were added in U-Net to extract more characteristic features. Implementation results on BraTS 2018 datasets show that proposed segmentation and classification outperforms in terms of accuracy, dice score, precision rate, recall rate, and Hausdorff Distance.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [1] Brain tumor segmentation and classification using optimized U-Net
    Shiny, K., V
    IMAGING SCIENCE JOURNAL, 2024, 72 (02): : 204 - 219
  • [2] BRAIN TUMOR SEGMENTATION AND CLASSIFICATION USING OPTIMIZED U-NET
    Shiny, K. V.
    JOURNAL OF MECHANICS IN MEDICINE AND BIOLOGY, 2024, 24 (01)
  • [3] Optimized U-Net for Brain Tumor Segmentation
    Futrega, Michal
    Milesi, Alexandre
    Marcinkiewicz, Michal
    Ribalta, Pablo
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2021, PT II, 2022, 12963 : 15 - 29
  • [4] MRI Brain tumor segmentation and classification with improved U-Net model
    Palleti Venkata Kusuma
    S. Chandra Mohan Reddy
    Multimedia Tools and Applications, 2025, 84 (4) : 1671 - 1696
  • [5] OPTIMIZED U-NET SEGMENTATION MODEL AND DEEP MAXOUT CLASSIFIER FOR BRAIN TUMOR CLASSIFICATION
    Thomas, Subha
    Sudarmani, R.
    BIOMEDICAL ENGINEERING-APPLICATIONS BASIS COMMUNICATIONS, 2024,
  • [6] Hybrid Pyramid U-Net Model for Brain Tumor Segmentation
    Kong, Xiangmao
    Sun, Guoxia
    Wu, Qiang
    Liu, Ju
    Lin, Fengming
    INTELLIGENT INFORMATION PROCESSING IX, 2018, 538 : 346 - 355
  • [7] MAU-Net: Mixed attention U-Net for MRI brain tumor segmentation
    Zhang, Yuqing
    Han, Yutong
    Zhang, Jianxin
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2023, 20 (12) : 20510 - 20527
  • [8] An MRI brain tumor segmentation method based on improved U-Net
    Zhu, Jiajun
    Zhang, Rui
    Zhang, Haifei
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2024, 21 (01) : 778 - 791
  • [9] Tuning U-Net for Brain Tumor Segmentation
    Futrega, Michal
    Marcinkiewicz, Michal
    Ribalta, Pablo
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES, BRAINLES 2022, 2023, 13769 : 162 - 173
  • [10] Adaptive cascaded transformer U-Net for MRI brain tumor segmentation
    Chen, Bonian
    Sun, Qiule
    Han, Yutong
    Liu, Bin
    Zhang, Jianxin
    Zhang, Qiang
    PHYSICS IN MEDICINE AND BIOLOGY, 2024, 69 (11):