Optimized U-Net Segmentation and Hybrid Res-Net for Brain Tumor MRI Classification

被引:8
|
作者
Rajaragavi, R. [1 ]
Rajan, S. Palanivel [2 ]
机构
[1] Anna Univ, Dept Informat & Commun Engn, Chennai 600025, Tamil Nadu, India
[2] M Kumarasamy Coll Engn, Dept Elect & Commun Engn, Thalavapalayam 639113, Karur, India
来源
关键词
MRI; convlstm; hausdorff distance; squirrel search; CONVOLUTIONAL NEURAL-NETWORKS;
D O I
10.32604/iasc.2022.021206
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
A brain tumor is a portion of uneven cells, need to be detected earlier for treatment. Magnetic Resonance Imaging (MRI) is a routinely utilized procedure to take brain tumor images. Manual segmentation of tumor is a crucial task and laborious. There is a need for an automated system for segmentation and classification for tumor surgery and medical treatments. This work suggests an efficient brain tumor segmentation and classification based on deep learning techniques. Initially, Squirrel search optimized bidirectional ConvLSTM U-net with attention gate proposed for brain tumour segmentation. Then, the Hybrid Deep ResNet and Inception Model used for classification. Squirrel search optimizer mimics the searching behavior of southern flying squirrels and their well-organized way of movement. Here, the squirrel optimizer is utilized to tune the hyperparameters of the U-net model. In addition, bidirectional attention modules of position and channel modules were added in U-Net to extract more characteristic features. Implementation results on BraTS 2018 datasets show that proposed segmentation and classification outperforms in terms of accuracy, dice score, precision rate, recall rate, and Hausdorff Distance.
引用
收藏
页码:1 / 14
页数:14
相关论文
共 50 条
  • [21] AResU-Net: Attention Residual U-Net for Brain Tumor Segmentation
    Zhang, Jianxin
    Lv, Xiaogang
    Zhang, Hengbo
    Liu, Bin
    SYMMETRY-BASEL, 2020, 12 (05):
  • [22] E-Res U-Net: An improved U-Net model for segmentation of muscle images
    Zhou, Junsheng
    Lu, Yiwen
    Tao, Siyi
    Cheng, Xuan
    Huang, Chenxi
    EXPERT SYSTEMS WITH APPLICATIONS, 2021, 185
  • [23] E-Res U-Net: An improved U-Net model for segmentation of muscle images
    Zhou, Junsheng
    Lu, Yiwen
    Tao, Siyi
    Cheng, Xuan
    Huang, Chenxi
    Expert Systems with Applications, 2021, 185
  • [24] Breast tumor segmentation in ultrasound images: comparing U-net and U-net + +
    de Oliveira, Carlos Eduardo Gonçalves
    Vieira, Sílvio Leão
    Paranaiba, Caio Felipe Brito
    Itikawa, Emerson Nobuyuki
    Research on Biomedical Engineering, 2025, 41 (01)
  • [25] TwoPath U-Net for Automatic Brain Tumor Segmentation from Multimodal MRI Data
    Kaewrak, Keerati
    Soraghan, John
    Di Caterina, Gaetano
    Grose, Derek
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT II, 2021, 12659 : 300 - 309
  • [26] Iris Segmentation based on an Optimized U-Net
    Abdalla, Sabry M.
    Omelina, Lubos
    Cornelis, Jan
    Jansen, Bart
    BIOSIGNALS: PROCEEDINGS OF THE 15TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES - VOL 4: BIOSIGNALS, 2022, : 176 - 183
  • [27] Improving brain tumor segmentation on MRI based on the deep U-net and residual units
    Yang, Tiejun
    Song, Jikun
    Li, Lei
    Tang, Qi
    JOURNAL OF X-RAY SCIENCE AND TECHNOLOGY, 2020, 28 (01) : 95 - 110
  • [28] Path aggregation U-Net model for brain tumor segmentation
    Lin, Fengming
    Wu, Qiang
    Liu, Ju
    Wang, Dawei
    Kong, Xiangmao
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (15) : 22951 - 22964
  • [29] Brain tumor segmentation using U-Net in conjunction with EfficientNet
    Lin, Shu-You
    Lin, Chun-Ling
    PEERJ COMPUTER SCIENCE, 2024, 10
  • [30] Modified U-Net for Automatic Brain Tumor Regions Segmentation
    Kaewrak, Keerati
    Soraghan, John
    Di Caterina, Gaetano
    Grose, Derek
    2019 27TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2019,