Deep learning promoted target volumes delineation of total marrow and total lymphoid irradiation for accelerated radiotherapy: A multi-institutional study

被引:0
|
作者
Xue, Xudong [1 ,2 ]
Shi, Jun [3 ]
Zeng, Hui [4 ,5 ]
Yan, Bing [2 ]
Liu, Lei [2 ]
Jiang, Dazhen [6 ]
Wang, Xiaoyong [6 ]
Liu, Hui [6 ]
Jiang, Man [7 ]
Shen, Jianjun [2 ]
An, Hong [3 ]
Liu, An [8 ]
机构
[1] Huazhong Univ Sci & Technol, Hubei Canc Hosp, Tongji Med Coll, Dept Radiat Oncol, Wuhan 430079, Peoples R China
[2] Univ Sci & Technol China, Affiliated Hosp USTC 1, Dept Radiat Oncol, Div Life Sci & Med, Hefei 230001, Peoples R China
[3] Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei 230026, Anhui, Peoples R China
[4] Jianghan Univ, Wuhan Hosp 6, Dept Radiotherapy & Oncol, Wuhan 430015, Peoples R China
[5] Jianghan Univ, Affiliated Hosp, Wuhan 430015, Peoples R China
[6] Wuhan Univ, Zhongnan Hosp, Hubei Canc Clin Study Ctr, Hubei Key Lab Tumor Biol Behav,Dept Radiat & Med O, Wuhan 430071, Peoples R China
[7] Huazhong Univ Sci & Technol, Sch Energy & Power Engn, Dept Nucl Engn & Technol, Wuhan 430000, Peoples R China
[8] City Hope Med Ctr, Dept Radiat Oncol, Duarte, CA 91010 USA
关键词
TMI; TMLI; Auto-segmentation; Deep learning; TOTAL-BODY IRRADIATION; HELICAL TOMOTHERAPY; RANDOMIZED-TRIAL; TRANSPLANTATION; CYCLOPHOSPHAMIDE; SEGMENTATION; FEASIBILITY; LEUKEMIA; BUSULFAN; CHILDREN;
D O I
10.1016/j.ejmp.2024.103393
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background and purpose: One of the current roadblocks to the widespread use of Total Marrow Irradiation (TMI) and Total Marrow and Lymphoid Irradiation (TMLI) is the challenging difficulties in tumor target contouring workflow. This study aims to develop a hybrid neural network model that promotes accurate, automatic, and rapid segmentation of multi-class clinical target volumes. Materials and methods: Patients who underwent TMI and TMLI from January 2018 to May 2022 were included. Two independent oncologists manually contoured eight target volumes for patients on CT images. A novel DualEncoder Alignment Network (DEA-Net) was developed and trained using 46 patients from one internal institution and independently evaluated on a total of 39 internal and external patients. Performance was evaluated on accuracy metrics and delineation time. Results: The DEA-Net achieved a mean dice similarity coefficient of 90.1 % +/- 1.8 % for internal testing dataset (23 patients) and 91.1 % +/- 2.5 % for external testing dataset (16 patients). The 95 % Hausdorff distance and average symmetric surface distance were 2.04 +/- 0.62 mm and 0.57 +/- 0.11 mm for internal testing dataset, and 2.17 +/- 0.68 mm, and 0.57 +/- 0.20 mm for external testing dataset, respectively, outperforming most of existing state -of -the -art methods. In addition, the automatic segmentation workflow reduced delineation time by 98 % compared to the conventional manual contouring process (mean 173 +/- 29 s vs. 12168 +/- 1690 s; P < 0.001). Ablation study validate the effectiveness of hybrid structures. Conclusion: The proposed deep learning framework achieved comparable or superior target volume delineation accuracy, significantly accelerating the radiotherapy planning process.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Whole Lymph Node Area Delineation with Deep Learning Model for Total Marrow/Lymphoid Irradiation
    Choi, H. S.
    Kang, H.
    Chang, J. H.
    Jang, B.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S929 - S930
  • [2] Whole Regional Lymph Node Area Delineation with Deep Learning Model for Total Marrow and Lymphoid Irradiation
    Choi, H.
    Kang, H. C.
    Chie, E. K.
    Chang, J. H.
    Jang, B. S.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2023, 117 (02): : E461 - E462
  • [3] Rationale, implementation considerations, delineation and planning target objective recommendations for volumetric modulated arc therapy and helical tomotherapy total body irradiation, total marrow irradiation, total marrow and lymphoid irradiation and total lymphoid irradiation
    Hoeben, Bianca A. W.
    Saldi, Simonetta
    Aristei, Cynthia
    Engellau, Jacob
    Ocanto, Abrahams
    Hiniker, Susan M.
    Misson-Yates, Sarah
    Kobyzeva, Daria A.
    Pazos, Montserrat
    Mikhaeel, N. George
    Rodriguez-Roldan, Marta
    Seravalli, Enrica
    Bosman, Mirjam E.
    Han, Chunhui
    Losert, Christoph
    Engstrom, Per E.
    Fulcheri, Christian P. L.
    Zucchetti, Claudio
    Ferrer, Carlos
    Hussein, Mohammad
    Loginova, Anna A.
    Clark, Catharine H.
    Wong, Jeffrey Y. C.
    RADIOTHERAPY AND ONCOLOGY, 2025, 206
  • [4] Multi-Institutional Evaluation of Setup, Organ Deformation, Precision Dosimetry in Total Marrow Irradiation
    Zuro, D.
    Hui, S.
    MEDICAL PHYSICS, 2016, 43 (06) : 3436 - 3436
  • [5] Multi-institutional Feasibility Study of a Fast Patient Localization Method in Total Marrow Irradiation With Helical Tomotherapy: A Global Health Initiative by the International Consortium of Total Marrow Irradiation
    Takahashi, Yutaka
    Vagge, Stefano
    Agostinelli, Stefano
    Han, Eunyoung
    Matulewicz, Lukasz
    Schubert, Kai
    Chityala, Ravishankar
    Ratanatharathorn, Vaneerat
    Tournel, Koen
    Penagaricano, Jose A.
    Florian, Sterzing
    Mahe, Marc-Andre
    Verneris, Michael R.
    Weisdorf, Daniel J.
    Corvo, Renzo
    Dusenbery, Kathryn E.
    Storme, Guy
    Hui, Susanta K.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2015, 91 (01): : 30 - 38
  • [6] Deep learning and atlas-based approaches for Total Marrow and Lymphoid Irradiation segmentation
    Dei, D.
    Lambri, N.
    Crespi, L.
    Brosio, R. Coimbra
    Loiacono, D.
    Scorsetti, M.
    Mancosu, P.
    RADIOTHERAPY AND ONCOLOGY, 2023, 182 : S1342 - S1344
  • [7] Multi-institutional evaluation of MVCT guided patient registration and dosimetric precision in total marrow irradiation: A global health initiative by the international consortium of total marrow irradiation
    Zuro, Darren
    Vagge, Stefano
    Broggi, Sara
    Agostinelli, Stefano
    Takahashi, Yutaka
    Brooks, Jamison
    Leszcynska, Paulina
    Liu, An
    Zucchetti, Claudio
    Saldi, Simonetta
    Han, Chunhui
    Cattaneo, Mauro
    Giebel, Sebastian
    Mahe, Marc Andre
    Sanchez, James F.
    Alaei, Parham
    Anna, Chiara
    Dusenbery, Kathryn
    Pierini, Antonio
    Storme, Guy
    Aristei, Cynthia
    Wong, Jeffrey Y. C.
    Hui, Susanta
    RADIOTHERAPY AND ONCOLOGY, 2019, 141 : 275 - 282
  • [8] Completion of Multi-Institutional Evaluation of MVCT Guided Patient Registration and Dosimetric Precision in Total Marrow Irradiation: A Global Health Initiative by the International Consortium of Total Marrow Irradiation
    Zuro, D.
    Vagge, S.
    Broggi, S.
    Agostinelli, S.
    Takahashi, Y.
    Brooks, J.
    Leszcynska, P.
    Liu, A.
    Mahe, M.
    Zucchetti, C.
    Simonetta, S.
    Han, C.
    Mauro, C.
    Giebel, S.
    Sanchez, J.
    Alaei, P.
    Anna, C.
    Dusenbery, K.
    Storme, G.
    Aristei, C.
    Wong, J.
    Hui, S.
    MEDICAL PHYSICS, 2019, 46 (06) : E178 - E178
  • [9] VARIABILITY OF TARGET AND NORMAL STRUCTURE DELINEATION FOR BREAST CANCER RADIOTHERAPY: AN RTOG MULTI-INSTITUTIONAL AND MULTIOBSERVER STUDY
    Li, X. Allen
    Tai, An
    Arthur, Douglas W.
    Buchholz, Thomas A.
    Macdonald, Shannon
    Marks, Lawrence B.
    Moran, Jean M.
    Pierce, Lori J.
    Rabinovitch, Rachel
    Taghian, Alphonse
    Vicini, Frank
    Woodward, Wendy
    White, Julia R.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2009, 73 (03): : 944 - 951
  • [10] Application of deep learning to auto -delineation of target volumes and organs at risk in radiotherapy
    Chen, M.
    Wu, S.
    Zhao, W.
    Zhou, Y.
    Zhou, Y.
    Wang, G.
    CANCER RADIOTHERAPIE, 2022, 26 (03): : 494 - 501