A lightweight CNN-Transformer network for pixel-based crop mapping using time-series Sentinel-2 imagery

被引:0
|
作者
Wang, Yumiao [1 ,2 ]
Feng, Luwei [3 ]
Sun, Weiwei [1 ]
Wang, Lihua [1 ]
Yang, Gang [1 ]
Chen, Binjie [1 ]
机构
[1] Ningbo Univ, Dept Geog & Spatial Informat Tech, Ningbo 315211, Peoples R China
[2] Ningbo Univ, Inst East China Sea, Ningbo 315211, Zhejiang, Peoples R China
[3] Wuhan Univ, Sch Remote Sensing & Informat Engn, Wuhan 430079, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Crop mapping; Convolutional neural network; Transformer; Pixel-based classification; Temporal Sentinel-2 data;
D O I
10.1016/j.compag.2024.109370
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
Deep learning approaches have provided state-of-the-art performance in crop mapping. Recently, several studies have combined the strengths of two dominant deep learning architectures, Convolutional Neural Networks (CNNs) and Transformers, to classify crops using remote sensing images. Despite their success, many of these models utilize patch-based methods that require extensive data labeling, as each sample contains multiple pixels with corresponding labels. This leads to higher costs in data preparation and processing. Moreover, previous methods rarely considered the impact of missing values caused by clouds and no-observations in remote sensing data. Therefore, this study proposes a lightweight multi-stage CNN-Transformer network (MCTNet) for pixel- based crop mapping using time-series Sentinel-2 imagery. MCTNet consists of several successive modules, each containing a CNN sub-module and a Transformer sub-module to extract important features from the images, respectively. An attention-based learnable positional encoding (ALPE) module is designed in the Transformer sub-module to capture the complex temporal relations in the time-series data with different missing rates. Arkansas and California in the U.S. are selected to evaluate the model. Experimental results show that the MCTNet has a lightweight advantage with the fewest parameters and memory usage while achieving the superior performance compared to eight advanced models. Specifically, MCTNet obtained an overall accuracy (OA) of 0.968, a kappa coefficient (Kappa) of 0.951, and a macro-averaged F1 score (F1) of 0.933 in Arkansas, and an OA of 0.852, a Kappa of 0.806, and an F1 score of 0.829 in California. The results highlight the importance of each component of the model, particularly the ALPE module, which enhanced the Kappa of MCTNet by 4.2% in Arkansas and improved the model's robustness to missing values in remote sensing data. Additionally, visualization results demonstrated that the features extracted from CNN and Transformer sub-modules are complementary, explaining the effectiveness of the MCTNet.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Combining pixel- and object-level information for land-cover mapping using time-series of Sentinel-2 satellite data
    Abidi, A.
    Ben Abbes, A.
    Gbodjo, Y. J. E.
    Ienco, D.
    Farah, I. R.
    REMOTE SENSING LETTERS, 2022, 13 (02) : 162 - 172
  • [32] Crop Type Identification and Mapping Using Machine Learning Algorithms and Sentinel-2 Time Series Data
    Feng, Siwen
    Zhao, Jianjun
    Liu, Tingting
    Zhang, Hongyan
    Zhang, Zhengxiang
    Guo, Xiaoyi
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (09) : 3295 - 3306
  • [33] Forest mapping and species composition using supervised per pixel classification of Sentinel-2 imagery
    Bolyn, Corentin
    Michez, Adrien
    Gaucher, Peter
    Lejeune, Philippe
    Bonnet, Stephanie
    BIOTECHNOLOGIE AGRONOMIE SOCIETE ET ENVIRONNEMENT, 2018, 22 (03): : 172 - 187
  • [34] Mapping tea plantation area using phenology algorithm, time-series Sentinel-2 and Landsat images
    Xia, Haoming
    Bian, Xiqing
    Pan, Li
    Li, Rumeng
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (09) : 2826 - 2846
  • [35] Deep Transformer-Based Network Deforestation Detection in the Brazilian Amazon Using Sentinel-2 Imagery
    Alshehri, Mariam
    Ouadou, Anes
    Scott, Grant J.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [36] Functional Analysis for Habitat Mapping in a Special Area of Conservation Using Sentinel-2 Time-Series Data
    Pesaresi, Simone
    Mancini, Adriano
    Quattrini, Giacomo
    Casavecchia, Simona
    REMOTE SENSING, 2022, 14 (05)
  • [37] A deep learning framework for crop mapping with reconstructed Sentinel-2 time series images
    Feng, Fukang
    Gao, Maofang
    Liu, Ronghua
    Yao, Shuihong
    Yang, Guijun
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2023, 213
  • [38] Cross-phenological-region crop mapping framework using Sentinel-2 time series Imagery: A new perspective for winter crops in China
    Wang, Ziqiao
    Zhang, Hongyan
    He, Wei
    Zhang, Liangpei
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2022, 193 : 200 - 215
  • [39] A Sub-Seasonal Crop Information Identification Framework for Crop Rotation Mapping in Smallholder Farming Areas with Time Series Sentinel-2 Imagery
    Xing, Huaqiao
    Chen, Bingyao
    Lu, Miao
    REMOTE SENSING, 2022, 14 (24)
  • [40] IMPROVING FOREST SPECIES MAPPING USING SENTINEL-2 TIME SERIES
    Chehata, Nesrine
    Chakroun, Media
    Youssfi, Rania
    Maaoui, Mohamed Amine
    Manai, Anis
    Werhani, Rami
    Aloui, Kamel
    Kouki, Nizar
    Talhaoui, Wafa
    Sahli, Thouraya
    2020 MEDITERRANEAN AND MIDDLE-EAST GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (M2GARSS), 2020, : 227 - 230