Deep Transformer-Based Network Deforestation Detection in the Brazilian Amazon Using Sentinel-2 Imagery

被引:0
|
作者
Alshehri, Mariam [1 ,2 ]
Ouadou, Anes [1 ]
Scott, Grant J. [1 ]
机构
[1] Univ Missouri, Dept Elect Engn & Comp Sci, Columbia, MO 65211 USA
[2] Princess Nourah Bint Abdulrahman Univ, Coll Comp & Informat Sci, Riyadh 84428, Saudi Arabia
关键词
Climate change; Environmental monitoring; Deforestation; Forestry; Change detection algorithms; Deep learning; Transformers; Biodiversity; Detection algorithms; Spatiotemporal phenomena; Satellite images; South America; Change detection (CD); deep learning (DL); deforestation; transformer; FOREST;
D O I
10.1109/LGRS.2024.3355104
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Deforestation poses a critical environmental challenge with far-reaching impacts on climate change, biodiversity, and local communities. As such, detecting and monitoring deforestation are crucial, and recent advancements in deep learning (DL) and remote sensing technologies offer a promising solution to this challenge. In this study, we adapt ChangeFormer, a transformer-based framework, to detect deforestation in the Brazilian Amazon, employing the attention mechanism to analyze spatial and temporal patterns in bitemporal satellite images. To assess the model's effectiveness, we employed a robust approach to create a deforestation detection (DD) dataset, utilizing Sentinel-2 imagery from select conservation areas in the Brazilian Amazon throughout 2020 and 2021. Our dataset comprises 7734 pairs of bitemporal image chips with a resolution of 256 x 256 pixels and 1406 pairs of image chips with a resolution of 512 x 512 pixels. The model achieved an overall accuracy (OA) of 93% with a corresponding F1 score of 90% and an intersection over union (IoU) score of 82%. These results demonstrate the potential of transformer-based networks for accurate and efficient DD.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 50 条
  • [1] FUSING SENTINEL-1 AND SENTINEL-2 IMAGES WITH TRANSFORMER-BASED NETWORK FOR DEFORESTATION DETECTION IN THE BRAZILIAN AMAZON UNDER DIVERSE CLOUD CONDITIONS
    Ferrari, F.
    Ferreira, M. P.
    Feitosa, R. Q.
    GEOSPATIAL WEEK 2023, VOL. 10-1, 2023, : 999 - 1006
  • [2] Deforestation Detection in the Brazilian Amazon Using Transformer-based Networks
    Alshehri, Mariam
    Ouadou, Anes
    Scott, Grant
    2023 IEEE CONFERENCE ON ARTIFICIAL INTELLIGENCE, CAI, 2023, : 292 - 293
  • [3] Mapping Mining Areas in the Brazilian Amazon Using MSI/Sentinel-2 Imagery (2017)
    Lobo, Felipe de Lucia
    Souza-Filho, Pedro Walfir M.
    Leao de Moraes Novo, Evlyn Marcia
    Carlos, Felipe Menino
    Faria Barbosa, Claudio Clemente
    REMOTE SENSING, 2018, 10 (08):
  • [4] Fusing Sentinel-1 and Sentinel-2 Images for Deforestation Detection in the Brazilian Amazon Under Diverse Cloud Conditions
    Ferrari, Felipe
    Ferreira, Matheus Pinheiro
    Almeida, Claudio Aparecido
    Feitosa, Raul Queiroz
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [5] A transformer-based cloud detection approach using Sentinel 2 imageries
    Singh, Rohit
    Biswas, Mantosh
    Pal, Mahesh
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (10) : 3194 - 3208
  • [6] EFFICIENT REMOTE SENSING TRANSFORMER FOR COASTLINE DETECTION WITH SENTINEL-2 SATELLITE IMAGERY
    Wang, Yuji
    Zhao, Ruojun
    Sun, Zijun
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5439 - 5442
  • [7] Biomass Prediction Using Sentinel-2 Imagery and an Artificial Neural Network in the Amazon/Cerrado Transition Region
    Faria, Luana Duarte de
    Matricardi, Eraldo Aparecido Trondoli
    Marimon, Beatriz Schwantes
    Miguel, Eder Pereira
    Junior, Ben Hur Marimon
    Oliveira, Edmar Almeida de
    Prestes, Nayane Cristina Candido dos Santos
    Carvalho, Osmar Luiz Ferreira de
    Forests, 2024, 15 (09):
  • [8] Deep semantic segmentation for detecting eucalyptus planted forests in the Brazilian territory using sentinel-2 imagery
    da Costa, Luciana Borges
    de Carvalho, Osmar Luiz Ferreira
    de Albuquerque, Anesmar Olino
    Gomes, Roberto Arnaldo Trancoso
    Guimaraes, Renato Fontes
    de Carvalho Junior, Osmar Abilio
    GEOCARTO INTERNATIONAL, 2022, 37 (22) : 6538 - 6550
  • [9] DEEP RECURRENT NEURAL NETWORK FOR CROP CLASSIFICATION TASK BASED ON SENTINEL-1 AND SENTINEL-2 IMAGERY
    Kussul, Nataliia
    Lavreniuk, Mykola
    Shumilo, Leonid
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 6914 - 6917
  • [10] DETECTION OF CHANGES IN IMPERVIOUS SURFACE USING SENTINEL-2 IMAGERY
    Zhang, Yiming
    Skakun, Sergii
    Prudente, Victor
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 4787 - 4790