Combining pixel- and object-level information for land-cover mapping using time-series of Sentinel-2 satellite data

被引:2
|
作者
Abidi, A. [1 ]
Ben Abbes, A. [1 ]
Gbodjo, Y. J. E. [2 ,3 ]
Ienco, D. [2 ,3 ]
Farah, I. R. [1 ]
机构
[1] Natl Sch Comp Sci, Riadi Lab, Manouba, Tunisia
[2] UMR TETIS, INRAE, Montpellier, France
[3] Univ Montpellier, Montpellier, France
关键词
D O I
10.1080/2150704X.2021.2001071
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
In this letter, we propose a new methodology for Satellite Image Time Series (SITS) land cover mapping, named Two Branches Convolutional Neural Network (TwoBCNN). The main objective of the proposed methodology is to combine pixel- and object-level multi-variate time-series information in the classification process. Experiments were carried out on a study site located in the south-west of France, namely, Dordogne leveraging Sentinel-2 SITS data. Results are compared to those obtained by several standard used approaches to deal with SITS-based land cover mapping. Results demonstrate that TwoBCNN, based on a combination of pixel- and object-based information, achieved the highest classification performance with respect to the competing approaches.
引用
收藏
页码:162 / 172
页数:11
相关论文
共 50 条
  • [1] Uncertainty Analysis of Object-Based Land-Cover Classification Using Sentinel-2 Time-Series Data
    Ma, Lei
    Schmitt, Michael
    Zhu, Xiaoxiang
    [J]. REMOTE SENSING, 2020, 12 (22) : 1 - 17
  • [2] Sentinel-2 Satellite Image Time-Series Land Cover Classification with Bernstein Copula Approach
    Tamborrino, Cristiano
    Interdonato, Roberto
    Teisseire, Maguelonne
    [J]. REMOTE SENSING, 2022, 14 (13)
  • [3] BENCHMARKING OF ALGORITHMS FOR CROP TYPE LAND-COVER MAPS USING SENTINEL-2 IMAGE TIME SERIES
    Inglada, J.
    Arias, M.
    Tardy, B.
    Morin, D.
    Valero, S.
    Hagolle, O.
    Dedieu, G.
    Sepulcre, G.
    Bontemps, S.
    Defourny, P.
    [J]. 2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 3993 - 3996
  • [4] COMBINING SENTINEL-1 AND SENTINEL-2 TIME SERIES VIA RNN FOR OBJECT-BASED LAND COVER CLASSIFICATION
    Ienco, Dino
    Gaetano, Raffaele
    Ose, Roberto Interdonato Kenji
    Dinh Ho Tong Minh
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 4881 - 4884
  • [5] GARLIC MAPPING FOR SENTINEL-2 TIME-SERIES DATA USING A RANDOM FOREST CLASSIFIER
    Chai, Zhaoyang
    Zhang, Hongyan
    Xu, Xiong
    Zhang, Liangpei
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 7224 - 7227
  • [6] A SEMI-SUPERVISED APPROACH TOWARDS LAND COVER MAPPING WITH SENTINEL-2 DESNSE TIME-SERIES IMAGERY
    Hu, Ting
    Huang, Xin
    Li, Jiayi
    Benediktsson, Jon Atli
    Yang, Jiansi
    Gong, Jianya
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 2423 - 2426
  • [7] Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for land cover mapping via a multi-source deep learning architecture
    Ienco, Dino
    Interdonato, Roberto
    Gaetano, Raffaele
    Dinh Ho Tong Minh
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 158 : 11 - 22
  • [8] Toward Spatio-Spectral Analysis of Sentinel-2 Time Series Data for Land Cover Mapping
    Eudes Gbodjo, Yawogan Jean
    Ienco, Dino
    Leroux, Louise
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (02) : 307 - 311
  • [9] Automatic Land-Cover Mapping using Landsat Time-Series Data based on Google Earth Engine
    Xie, Shuai
    Liu, Liangyun
    Zhang, Xiao
    Yang, Jiangning
    Chen, Xidong
    Gao, Yuan
    [J]. REMOTE SENSING, 2019, 11 (24)
  • [10] Mapping Mediterranean maquis formations using Sentinel-2 time-series
    Listiani, Indira Aprilia
    Leloglu, Ugur Murat
    Zeydanli, Ugur
    Caliskan, Bilgehan Kaan
    [J]. ECOLOGICAL INFORMATICS, 2022, 71