Combining Sentinel-1 and Sentinel-2 Satellite Image Time Series for land cover mapping via a multi-source deep learning architecture

被引:188
|
作者
Ienco, Dino [1 ]
Interdonato, Roberto [2 ]
Gaetano, Raffaele [2 ]
Dinh Ho Tong Minh [3 ]
机构
[1] Univ Montpellier, IRSTEA, UMR TETIS, LIRMM, Montpellier, France
[2] CIRAD, UMR TETIS, Montpellier, France
[3] Univ Montpellier, IRSTEA, UMR TETIS, Montpellier, France
关键词
Satellite Image Time Series; Deep learning; Land cover classification; Sentinel-2; Sentinel-1; Data fusion; FEATURE-EXTRACTION; CLASSIFICATION;
D O I
10.1016/j.isprsjprs.2019.09.016
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
The huge amount of data currently produced by modern Earth Observation (EO) missions has allowed for the design of advanced machine learning techniques able to support complex Land Use/Land Cover (LULC) mapping tasks. The Copernicus programme developed by the European Space Agency provides, with missions such as Sentinel-1 (S1) and Sentinel-2 (S2), radar and optical (multi-spectral) imagery, respectively, at 10 m spatial resolution with revisit time around 5 days. Such high temporal resolution allows to collect Satellite Image Time Series (SITS) that support a plethora of Earth surface monitoring tasks. How to effectively combine the complementary information provided by such sensors remains an open problem in the remote sensing field. In this work, we propose a deep learning architecture to combine information coming from S1 and S2 time series, namely TWINNS (TWIn Neural Networks for Sentinel data), able to discover spatial and temporal dependencies in both types of SITS. The proposed architecture is devised to boost the land cover classification task by leveraging two levels of complementarity, i.e., the interplay between radar and optical SITS as well as the synergy between spatial and temporal dependencies. Experiments carried out on two study sites characterized by different land cover characteristics (i.e., the Koumbia site in Burkina Faso and Reunion Island, a overseas department of France in the Indian Ocean), demonstrate the significance of our proposal.
引用
收藏
页码:11 / 22
页数:12
相关论文
共 50 条
  • [1] COMBINING SENTINEL-1 AND SENTINEL-2 TIME SERIES VIA RNN FOR OBJECT-BASED LAND COVER CLASSIFICATION
    Ienco, Dino
    Gaetano, Raffaele
    Ose, Roberto Interdonato Kenji
    Dinh Ho Tong Minh
    [J]. 2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 4881 - 4884
  • [2] Combining Sentinel-1 and Sentinel-2 data for improved land use and land cover mapping of monsoon regions
    Steinhausen, Max J.
    Wagner, Paul D.
    Narasimhan, Balaji
    Waske, Bjoern
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2018, 73 : 595 - 604
  • [3] Fast Urban Land Cover Mapping Exploiting Sentinel-1 and Sentinel-2 Data
    Petrushevsky, Naomi
    Manzoni, Marco
    Monti-Guarnieri, Andrea
    [J]. REMOTE SENSING, 2022, 14 (01)
  • [4] Fusion of Sentinel-1 and Sentinel-2 image time series for permanent and temporary surface water mapping
    Bioresita, Filsa
    Puissant, Anne
    Stumpf, Andre
    Malet, Jean-Philippe
    [J]. INTERNATIONAL JOURNAL OF REMOTE SENSING, 2019, 40 (23) : 9026 - 9049
  • [5] OPERATIVE MAPPING OF IRRIGATED AREAS USING SENTINEL-1 AND SENTINEL-2 TIME SERIES
    Bazzi, Hassan
    Baghdadi, Nicolas
    Zribi, Mehrez
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 5796 - 5799
  • [6] Land use mapping using Sentinel-1 and Sentinel-2 time series in a heterogeneous landscape in Niger, Sahel
    Schulz, Dario
    Yin, He
    Tischbein, Bernhard
    Verleysdonk, Sarah
    Adamou, Rabani
    Kumar, Navneet
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2021, 178 : 97 - 111
  • [7] Crop Type and Land Cover Mapping in Northern Malawi Using the Integration of Sentinel-1, Sentinel-2, and PlanetScope Satellite Data
    Kpienbaareh, Daniel
    Sun, Xiaoxuan
    Wang, Jinfei
    Luginaah, Isaac
    Bezner Kerr, Rachel
    Lupafya, Esther
    Dakishoni, Laifolo
    [J]. REMOTE SENSING, 2021, 13 (04) : 1 - 21
  • [8] Integrated use of Sentinel-1 and Sentinel-2 data and open-source machine learning algorithms for land cover mapping in a Mediterranean region
    De Luca, Giandomenico
    Silva, Joao M. N.
    Di Fazio, Salvatore
    Modica, Giuseppe
    [J]. EUROPEAN JOURNAL OF REMOTE SENSING, 2022, 55 (01) : 52 - 70
  • [9] Land Use Land Cover Classification with U-Net: Advantages of Combining Sentinel-1 and Sentinel-2 Imagery
    Solorzano, Jonathan V.
    Mas, Jean Francois
    Gao, Yan
    Gallardo-Cruz, Jose Alberto
    [J]. REMOTE SENSING, 2021, 13 (18)
  • [10] Integration of Sentinel-1 and Sentinel-2 Data for Land Cover Mapping Using W-Net
    Gargiulo, Massimiliano
    Dell'Aglio, Domenico A. G.
    Iodice, Antonio
    Riccio, Daniele
    Ruello, Giuseppe
    [J]. SENSORS, 2020, 20 (10)