Synergistic Enhancement of Biaxial Stretching and Multilayer Composites in All-Solid-State Polymer Electrolytes

被引:1
|
作者
Yang, Zhitao [1 ]
Zhang, Zhen [1 ]
Liu, Yong [1 ]
Fang, Yiping [1 ]
Li, Cheng [1 ]
机构
[1] South China Univ Technol, Natl Engn Res Ctr Novel Equipment Polymer Proc, Sch Mech & Automot Engn, Key Lab Polymer Proc Engn,Minist Educ,Guangdong Pr, Guangzhou 510641, Peoples R China
基金
中国国家自然科学基金;
关键词
high-performance all-solid-state lithium-ion batteries; multilayered composite all-solid-state electrolyte; bidirectionalstretching; reduce interfacial impedance; poly(ethyleneoxide); polyvinylidene fluoride-hexafluoropropylene; MEMBRANE; CONDUCTIVITY; DIFFUSION; FLUORIDE);
D O I
10.1021/acsami.4c10090
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
As an important component of lithium-ion batteries, all-solid-state electrolytes should possess high ionic conductivity, excellent flexibility, and relatively high mechanical strength. All-solid-state polymer electrolytes (ASSPEs) based on polymers seem to be able to meet these requirements. However, pure ASSPEs have relatively low ionic conductivity, and the addition of inorganic fillers such as lithium salts will reduce their flexibility and mechanical strength. To address the above issues, in this paper, the solvent-free method was used to prepare a poly(vinylidenefluoride-co-hexafluoropropylene)/lithium bis(trifluoromethanesulfonyl) imide/poly(ethylene oxide) all-solid-state polymer electrolyte, which was then subjected to 4 x 4 magnification synchronous bidirectional stretching. Subsequently, it was multilayered with PEO-based composite polymer electrolytes to obtain multilayered composite polymer electrolytes (MCPEs). Bidirectional stretching provides superior in-plane and out-of-plane mechanical properties to MCPEs by inducing molecular chain orientation, which suppresses the growth of lithium dendrites. Concurrently, it facilitates the formation of the beta-crystal form of PVDF-HFP, thereby weakening the ion solvation effect and reducing the lithium-ion migration energy barrier. Multilayered compounding improves the interfacial contact between MCPEs and electrodes, thereby reducing the interfacial impedance. Experiments have demonstrated that the MCPEs prepared in this paper exhibit high ionic conductivity at room temperature (1.83 x 10(-4) S cm(-1)), low interfacial resistance (547 Omega cm(-2)), excellent mechanical properties (26 MPa), and excellent cycling rate performance (a capacity retention rate of 90% after 110 cycles at 0.1 C), which can meet the performance requirements of lithium-ion batteries for ASSPEs.
引用
收藏
页码:51469 / 51479
页数:11
相关论文
共 50 条
  • [21] All-solid-state asymmetric supercapacitors with solid composite electrolytes
    Ulihin, A. S.
    Mateyshina, Yu. G.
    Uvarov, N. F.
    SOLID STATE IONICS, 2013, 251 : 62 - 65
  • [22] Composite solid electrolytes for all-solid-state lithium batteries
    Dirican, Mahmut
    Yan, Chaoyi
    Zhu, Pei
    Zhang, Xiangwu
    MATERIALS SCIENCE & ENGINEERING R-REPORTS, 2019, 136 (27-46): : 27 - 46
  • [23] Halide and Sulfide Electrolytes in Cathode Composites for Sodium All-Solid-State Batteries and their Stability
    Goodwin, Laura E.
    Ziegler, Maya
    Till, Paul
    Nazer, Nazia
    Adelhelm, Philipp
    Zeier, Wolfgang G.
    Richter, Felix H.
    Janek, Juergen
    ACS APPLIED MATERIALS & INTERFACES, 2024, 16 (15) : 19792 - 19805
  • [24] Understanding the Positive Effect of LATP in Polymer Electrolytes in All-Solid-State Lithium Batteries
    Breuer, Ortal
    Peta, Gayathri
    Elias, Yuval
    Alon-Yehezkel, Hadas
    Weng, Yu-Ting
    Fayena-Greenstein, Miryam
    Wu, Nae-Lih
    Levi, Mikhael D.
    Aurbach, Doron
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2023, 170 (09)
  • [25] Influence of Salt Anions on the Reactivity of Polymer Electrolytes in All-Solid-State Sodium Batteries
    Peta, Gayathri
    Alon-Yehezkel, Hadas
    Bublil, Shaul
    Penki, Tirupathi Rao
    Breuer, Ortal
    Elias, Yuval
    Fayena-Greenstein, Miryam
    Aurbach, Doron
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (07)
  • [26] Fluoride Ion Conductive Polymer Electrolytes for All-solid-state Fluoride Shuttle Batteries
    Takahashi, Keitaro
    Yokoo, Atsuya
    Kaneko, Yukari
    Abe, Takeshi
    Seki, Shiro
    ELECTROCHEMISTRY, 2020, 88 (04) : 310 - 313
  • [27] Enhancement of the rate capabilities for all-solid-state batteries through the surface oxidation of sulfide solid electrolytes
    Sasaki, Izuru
    Honda, Kazuyoshi
    Asano, Tetsuya
    Ito, Yusuke
    Komori, Tomoyuki
    Hibino, Junichi
    SOLID STATE IONICS, 2020, 347
  • [28] Chloride solid-state electrolytes for all-solid-state lithium batteries
    Wu, Hao
    Han, Haoqin
    Yan, Zhenhua
    Zhao, Qing
    Chen, Jun
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2022, 26 (09) : 1791 - 1808
  • [29] Chloride solid-state electrolytes for all-solid-state lithium batteries
    Hao Wu
    Haoqin Han
    Zhenhua Yan
    Qing Zhao
    Jun Chen
    Journal of Solid State Electrochemistry, 2022, 26 : 1791 - 1808
  • [30] Enhanced Electrochemical Performance of Hybrid Solid Polymer Electrolytes Encompassing Viologen for All-Solid-State Lithium Polymer Batteries
    Angulakhsmi, Natarajan
    Ambrose, Bebin
    Sathya, Swamickan
    Kathiresan, Murugavel
    Lingua, Gabriele
    Ferrari, Stefania
    Gowd, Erathimmanna Bhoje
    Wang, Wenyang
    Shen, Cai
    Elia, Giuseppe Antonio
    Gerbaldi, Claudio
    Stephan, Arul Manuel
    ACS MATERIALS AU, 2023, 3 (05): : 528 - 539