Synergistic Enhancement of Biaxial Stretching and Multilayer Composites in All-Solid-State Polymer Electrolytes

被引:1
|
作者
Yang, Zhitao [1 ]
Zhang, Zhen [1 ]
Liu, Yong [1 ]
Fang, Yiping [1 ]
Li, Cheng [1 ]
机构
[1] South China Univ Technol, Natl Engn Res Ctr Novel Equipment Polymer Proc, Sch Mech & Automot Engn, Key Lab Polymer Proc Engn,Minist Educ,Guangdong Pr, Guangzhou 510641, Peoples R China
基金
中国国家自然科学基金;
关键词
high-performance all-solid-state lithium-ion batteries; multilayered composite all-solid-state electrolyte; bidirectionalstretching; reduce interfacial impedance; poly(ethyleneoxide); polyvinylidene fluoride-hexafluoropropylene; MEMBRANE; CONDUCTIVITY; DIFFUSION; FLUORIDE);
D O I
10.1021/acsami.4c10090
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
As an important component of lithium-ion batteries, all-solid-state electrolytes should possess high ionic conductivity, excellent flexibility, and relatively high mechanical strength. All-solid-state polymer electrolytes (ASSPEs) based on polymers seem to be able to meet these requirements. However, pure ASSPEs have relatively low ionic conductivity, and the addition of inorganic fillers such as lithium salts will reduce their flexibility and mechanical strength. To address the above issues, in this paper, the solvent-free method was used to prepare a poly(vinylidenefluoride-co-hexafluoropropylene)/lithium bis(trifluoromethanesulfonyl) imide/poly(ethylene oxide) all-solid-state polymer electrolyte, which was then subjected to 4 x 4 magnification synchronous bidirectional stretching. Subsequently, it was multilayered with PEO-based composite polymer electrolytes to obtain multilayered composite polymer electrolytes (MCPEs). Bidirectional stretching provides superior in-plane and out-of-plane mechanical properties to MCPEs by inducing molecular chain orientation, which suppresses the growth of lithium dendrites. Concurrently, it facilitates the formation of the beta-crystal form of PVDF-HFP, thereby weakening the ion solvation effect and reducing the lithium-ion migration energy barrier. Multilayered compounding improves the interfacial contact between MCPEs and electrodes, thereby reducing the interfacial impedance. Experiments have demonstrated that the MCPEs prepared in this paper exhibit high ionic conductivity at room temperature (1.83 x 10(-4) S cm(-1)), low interfacial resistance (547 Omega cm(-2)), excellent mechanical properties (26 MPa), and excellent cycling rate performance (a capacity retention rate of 90% after 110 cycles at 0.1 C), which can meet the performance requirements of lithium-ion batteries for ASSPEs.
引用
收藏
页码:51469 / 51479
页数:11
相关论文
共 50 条
  • [31] Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes
    Banerjee, Abhik
    Wang, Xuefeng
    Fang, Chengcheng
    Wu, Erik A.
    Meng, Ying Shirley
    CHEMICAL REVIEWS, 2020, 120 (14) : 6878 - 6933
  • [32] Ductile Inorganic Solid Electrolytes for All-Solid-State Lithium Batteries
    Yu, Tao
    Liu, Yuankai
    Li, Haoyu
    Sun, Yu
    Guo, Shaohua
    Zhou, Haoshen
    CHEMICAL REVIEWS, 2025,
  • [33] Research progress on chloride solid electrolytes for all-solid-state batteries
    Zheng, Mingyuan
    Li, Xin
    Sun, Jianwei
    Wang, Xinlu
    Liu, Guixia
    Yu, Wensheng
    Dong, Xiangting
    Wang, Jinxian
    JOURNAL OF POWER SOURCES, 2024, 595
  • [34] Studies of lithium argyrodite solid electrolytes for all-solid-state batteries
    Rao, R. P.
    Adams, S.
    PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE, 2011, 208 (08): : 1804 - 1807
  • [35] All-Solid-State Asymmetric Supercapacitors with Metal Selenides Electrodes and Ionic Conductive Composites Electrolytes
    Chen, Zhiyuan
    Yang, Yongrui
    Ma, Zhihao
    Zhu, Tao
    Liu, Lei
    Zheng, Jie
    Gong, Xiong
    ADVANCED FUNCTIONAL MATERIALS, 2019, 29 (38)
  • [36] Enhancement of ionic conductivity in Li argyrodite solid electrolytes with bromide and borohydride anions for all-solid-state batteries
    Seo, Hyungeun
    Jang, Yong-Jin
    Yoo, Jaeseong
    Han, Ji-Hoon
    Lee, Young-Su
    Jung, Jae Yup
    Lee, Soeun
    Yi, Kyung-Woo
    Cho, Young Whan
    Cho, Woosuk
    Kim, Jae-Hun
    JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (39) : 27022 - 27030
  • [37] Thermally stable modification of PEO-based all-solid-state electrolytes via a stretching flow field: Constructing a supportive polymer skeleton
    Yang, Zhitao
    Zhang, Zhen
    Li, Cheng
    Fang, Yiping
    Liu, Yong
    Yi, Qingfeng
    JOURNAL OF APPLIED POLYMER SCIENCE, 2024, 141 (37)
  • [38] Interfacial Interaction of Multifunctional GQDs Reinforcing Polymer Electrolytes For All-Solid-State Li Battery
    Liu, Huaxin
    Xu, Laiqiang
    Tu, Hanyu
    Luo, Zheng
    Zhu, Fangjun
    Deng, Wentao
    Zou, Guoqiang
    Hou, Hongshuai
    Ji, Xiaobo
    SMALL, 2023, 19 (33)
  • [39] Engineered Interfaces in Hybrid Ceramic - Polymer Electrolytes for Use in All-Solid-State Li Batteries
    Chinnam, Parameswara Rao
    Wunder, Stephanie L.
    ACS ENERGY LETTERS, 2017, 2 (01): : 134 - 138
  • [40] Polymer-Rich Composite Electrolytes for All-Solid-State Li-S Cells
    Judez, Xabier
    Zhang, Heng
    Li, Chunmei
    Gebresilassie Eshetu, Gebrekidan
    Zhang, Yan
    Gonzalez-Marcos, Jose A.
    Armand, Michel
    Rodriguez-Martinez, Lide M.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2017, 8 (15): : 3473 - 3477